Abstract

The paper presents a physically based mathematical model of the key hydrophysical processes of runoff formation at a catchment point over a long-term period. The model describes the freezing and thawing of soil, the formation and melting of the snow cover, the migration of moisture to the freezing front and the infiltration of rain and melt moisture, evaporation from snow, soil cover, vegetation, and water surface. Average daily values of meteorological parameters are used as initial information for mathematical modeling. The relevance of the study is caused by a need to reveal the main links between the processes of vertical heat and moisture exchange in soil and the environmental factors that determine their climate-driven nature. Using observational data from water balance stations, numerical experiments and an analysis of the influence of long-term variability of the key meteorological factors on evaporation from the land and water surface and on vertical moisture flows in soil were carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call