Abstract

Direct numerical simulation of a process of hydrogen diffusive intrusion into the lithium niobate monocrystal is fulfilled with reference to the manufacturing two-channel system of waveguides. The calculations were carried out according to the technology of waveguides production, taking into account the presence of several stages, which at first include the material saturation with the protons by treating the working surface with the melt of benzoic acid, and then annealing the sample. The contribution of the nonlinear diffusion to the process of the waveguide shaping is analyzed. It is shown that the formation of a stepped waveguide boundary is significantly influenced by the procedure of monocrystal annealing. Heretofore, the annealing stage was not quantitatively investigated. It can be emphasized that the attention has not been paid to the possible role of the annealing on formation of the sharper boundary between the waveguide and its mother substrate. A theoretical model of anisotropic diffusion in a solid material is constructed on the basis of experimental data, which indicate the presence of a transitional surface layer with pronounced regular mesostructural directions in the polished lithium niobate monocrystal. Based on the derived equations, the waveguides shape in a cross-section was simulated numerically for different values of inclination angle of the main axes with respect to the cut lines of the crystal. It is demonstrated that in the region of the waveguide bifurcation, when at the stage of protons intrusion the interaction of diffusive fluxes is possible, the diffusion anisotropy can lead to a breakdown of the waveguides symmetry, which can affect their optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.