Abstract

Due to the tough requirements for the environmental safety of the space objects operation, the use of methane-based fuel together with oxygen is a promising direction in developing a new generation of rocket and space technology, including low-thrust rocket engines. When developing low-thrust rocket engines running on oxygen-methane fuel, a mathematical experiment helps to identify the determining factors that affect the quality of the working process in the combustion chamber and to make a calculated optimization of the parameters for supplying fuel components to the combustion chamber. This contributes to a better understanding of the physics of the ongoing processes and leads to recommendations for the design of individual components of the combustion chamber. The numerical simulation enables us to optimize the geometry of the combustion chamber in order to obtain the maximum value of the chamber coefficient, which for an isobaric combustion chamber can be equal to the coefficient of the flow complex. This approach can significantly reduce the number of expensive bench tests. The paper introduces a physical and mathematical model of the workflow in the combustion chamber of a low-thrust rocket engine and gives a comparative analysis of the calculation results for various modifications of the original geometry of the low thrust rocket chamber. Recommendations are given for changing the initial geometry of the combustion chamber in order to increase the coefficient of the flow complex while maintaining a satisfactory thermal state of this chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call