Abstract

The paper presents the methodology for designing the load bearing elements of tail section of a light aircraft through the sequential application of methods of parametric and topological optimization. First, we analyzed the loads acting on the aircraft at its maneuvering in the vertical and horizontal planes. Then, for these loads, by the parametric optimization method, we selected the locations of ribs of the tail section of the aircraft, which were subsequently used to develop individual forms of ribs based on the topology optimization method. Next, we carried out parametric optimization of layup angles of polymer composite material, intended for the production of ribs. Finally, we developed a structural layout for the load bearing elements of the fuselage, which meets the criteria of minimum weight when restrictions are imposed on the level of stresses in some layers of the composite material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.