Abstract

Articulated wheel-walking robots having a good combination of weight and load capacity, as well as high cross-country capacity and maneuverability are among the promising schemes of mobile robotic systems. One of the main requirements for such complexes is a high level of autonomy. In this regard, the task of improving the energy efficiency of the articulated mobile wheeled robot movement (especially in long-term transport mode) by reducing the driving wheel skid becomes urgent. An algorithm for the operation of the antiskid system of such a robot with an individual traction electric drive has been developed. It provides an increase in the energy efficiency of robot movement and cross-country capacity by reducing the skid of the driving wheels. The efficiency of the antiskid system operation algorithm has been proved by the simulation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.