Abstract

A linear inhomogeneous differential equation (LIDE) of the n th order with constant bounded operator coefficients is studied in Banach space. Finding a general solution of LIDE is reduced to the construction of a general solution to the corresponding linear homogeneous differential equation (LHDE). Characteristic operator equation for LHDE is considered in the Banach algebra of complex operators. In the general case, when both real and complex operator roots are among the roots of the characteristic operator equation, the n -parametric family of solutions to LHDE is indicated. Operator functions eAt ; sinBt ; cosBt of real argument t ∈ [0;∞) are used when building this family. The conditions under which this family of solutions form a general solution to LHDE are clarified. In the case when the characteristic operator equation has simple real operator roots and simple pure imaginary operator roots, a specific form of such conditions is indicated. In particular, these roots must commute with LHDE operator coefficients. In addition, they must commute with each other. In proving the corresponding assertion, the Cramer operator-vector rule for solving systems of linear vector equations in a Banach space is applied

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.