Abstract

Currently, in various industries (engineering, aircraft, energy, etc.) the issue of product quality assurance and control is particularly acute. This is due primarily to the ever-increasing requirements for increasing reliability with increasing loads on products, which entails the strengthening of technical standards. The issue of quality control for rocket and space technology products is especially relevant. Modern power structures of rocket and spacecraft made of polymer composite materials, and especially the body of solid fuel rocket engines (SFRЕ), are multilayer packages of various polymer-composite materials (PKM), obtained and interconnected in the process of manufacturing the body. The efficiency of SFRЕ depends on the quality of the formation of PKM in production conditions. The most important issues are the implementation of production quality control of composite structures, the reliability of control results and the ability to automate the control process. The article presents an automated system of non-contact ultrasonic non-destructive testing, which allows to control the stability of the technological process of forming the composite material of the wall of the SFRЕ body and, if necessary, to adjust it. The probability of detecting zones of anomalous violation of the integrity of the wall material of the SFRЕ housing is carried out due to adaptive algorithms, digital systems of multilevel matrix processing and optimal filtering of the received signals. The automated system of contactless ultrasonic non-destructive quality control of SFRЕ cases allows to register conditions of scanning and control for more visual representation of the defectogram in the expanded look of the case of a product in the course of control and at documentation of its results. The presented results of work on the development of an automated system of non-destructive testing of the integrity of the buildings of the SFRЕ type "cocoon" confirm the possibilities of practical implementation in production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call