Abstract

AbstractWe discuss particular features of generation of surface plasmon polaritons in a metal–dielectric planar interface that is coupled to semiconductor quantum dots by near-field interactions. As a model of working medium for performing numerical experiment, we use a gold metal surface onto which a polyethylene terephthalate film containing CdSe semiconductor spherical quantum dot is deposited. The problem of optimizing the radius of a quantum dot and its distance to a metal surface is solved for achieving the maximum transfer efficiency of the quantum dot energy for the generation of surface plasmon polaritons. Dispersion effects of the surface wave generation rate associated with deviations of the radius of quantum dots and their distance to the metal surface from the corresponding average values are taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.