Abstract

The problem on the influence of stressed state on the process of long-term deformation of nonlinear viscoelastic materials under the simple and quasi-simple modes of loading by introduction of the function with the parameter of Lode angle into the defining equations is considered. The mentioned function is determined by analysis of base experimental data obtained from the base experiments on axial tension and pure torsion. Physical and mechanical properties of nonlinear viscoelastic solids are defined by the correspondence between the invariants of deformation tensors and tensions according to the modified nonlinear Rabotnov’s model for viscoelasticity. The heredity kernels are given by the fractional-exponential function. The constructed defining equations are verified experimentally for the problems of determination of nonlinear creep deformations under combined loading applied to the thin-walled tubular elements made of polyethylene of high density and low pressure polyethylene. As a result of juxtaposition of experimental data and calculations it is a stated that allowing for the type of stressed state improves their agreement qualitatively and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.