Abstract

The article provides materials on the analysis of the chemical composition of silicates and aluminosilicates that make up the differentiated body of the Misaelga complex, which made it possible by calculation methods to restore the thermobaric parameters of crystallization of the melt in the intermediate chamber. The presence of high-temperature (1472 ºC) intratelluric olivine crystals characterizing the process of magma generation in the mantle and olivine crystallizing under the conditions of the intermediate chamber (1050–1183 ºC) has been established. The calculated crystallization temperature of pyroxenes indicates that they crystallized together with olivine from the bulk of the rocks, and the established variations in the P–T parameters (T = 950–1045 ºC, P = 4.0–7.4 kbar) for plagioclase and amphibole complete the quantitative characteristics of high-temperature melt crystallization processes. It is shown that the calculated Р–Т parameters of the crystallization of the melt that formed the intrusive massif make it possible to classify its ultrabasic horizon as picrite complexes of the second type that we identified earlier. Modeling of the crystallization process carried out using two models – according to the algorithm of H.D. Nathan and K.K. Van Kirk and the software product KOMAGMAT – made it possible to establish that the most probable mechanism for the formation of a differentiated body of the Misaelga complex was directional crystallization with gravitational deposition of olivine at the initial stages of the formation of the massif.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call