Abstract

Spectral analysis of signals is used as one of the main methods for studying systems and objects of various physical natures. Under conditions of a priori statistical uncertainty, the signals are subject to random changes and noise. Spectral analysis of such signals involves the estimation of the power spectral density (PSD). One of the classical methods for estimating PSD is the periodogram method. The algorithms that implement this method in digital form are based on the discrete Fourier transform. Digital multiplication operations are mass operations in these algorithms. The use of window functions leads to an increase in the number of these operations. Multiplication operations are among the most time consuming operations. They are the dominant factor in determining the computational capabilities of an algorithm and determine its multiplicative complexity. The paper deals with the problem of reducing the multiplicative complexity of calculating the periodogram estimate of the PSD using window functions. The problem is solved based on the use of binary-sign stochastic quantization for converting a signal into digital form. This two-level signal quantization is carried out without systematic error. Based on the theory of discrete-event modeling, the result of a binary-sign stochastic quantization in time is considered as a chronological sequence of significant events determined by the change in its values. The use of a discrete-event model for the result of binary-sign stochastic quantization provided an analytical calculation of integration operations during the transition from the analog form of the periodogram estimation of the SPM to the mathematical procedures for calculating it in discrete form. These procedures became the basis for the development of a digital algorithm. The main computational operations of the algorithm are addition and subtraction arithmetic operations. Reducing the number of multiplication operations decreases the overall computational complexity of the PSD estimation. Numerical experiments were carried out to study the algorithm operation. They were carried out on the basis of simulation modeling of the discrete-event procedure of binary-sign stochastic quantization. The results of calculating the PSD estimates are presented using a number of the most famous window functions as an example. The results obtained indicate that the use of the developed algorithm allows calculating periodogram estimates of PSD with high accuracy and frequency resolution in the presence of additive white noise at a low signal-to-noise ratio. The practical implementation of the algorithm is carried out in the form of a functionally independent software module. This module can be used as a part of complex metrologically significant software for operational analysis of the frequency composition of complex signals.

Highlights

  • Under conditions of a priori statistical uncertainty, the signals are subject to random changes and noise. Spectral analysis of such signals involves the estimation of the power spectral density (PSD)

  • The use of window functions leads to an increase in the number of these operations

  • Multiplication operations are among the most time consuming operations

Read more

Summary

При этом

Значения коэффициентов an для окон Хана, Хэмминга, Блэкмана и Наттолла представлены в таблице 1. Значения коэффициентов an для окон Хана, Хэмминга, Блэкмана и Наттолла. Соотношения (27)-(30) положены в основу разработки алгоритмического обеспечения для вычисления периодограммной оценки СПМ в дискретном виде. В процессе решения поставленной задачи важным этапом стала программная реализация разработанного математического и алгоритмического обеспечения, а также постановка и проведение численных экспериментов с использованием данного программного обеспечения с целью исследования потенциальных возможностей полученных решений по вычислению периодограммной оценки СПМ. Такой подход к заданию частот позволил формализовать процесс исследования потенциальных возможностей разработанного математического и алгоритмического обеспечения по оценке частотных спектров для моделей сигнала с различными параметрами гармонических компонент в единой нормированной полосе частот. Такой состав гармонических компонент использовался для оценки способности обнаруживать присутствие слабых спектральных составляющих при доминировании в спектре сильных составляющих на фоне широкополосного шума. В частности, такая модель реализации сигнала содержала двенадцать гармонических компонент, параметры которых представлены в таблице 2

Akн f kн
Signal Detection in Generalized Gaussian Noise and Lossy Binary Communication
Methods and Algorithms
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call