Abstract
AbstractWe investigate the structure of the wall sheath of a gas discharge near a flat surface at a negative potential for high mean electron energy. It is shown that in the conditions where the mean energy of ions in the plasma is much lower than the mean electron energy, the parameters of the wall sheath weakly depend on the mutual orientation of the normal to the surface and the electric field in the plasma for an arbitrary ratio of the Debye radius to the ion mean free path relative to the resonant charge exchange process. It is found that for inert gases (He, Ar) for ratio E / P of the electric field to pressure exceeding 10 V/(cm Torr) in the plasma, the disregard of ionization in the perturbed wall sheath can lead to substantial errors in the calculation of its parameters. It is shown that the ionization leads to an increase in the electric field in the wall sheath and, as a consequence, to an increase in the mean velocity of ions at the boundary between the quasi-neutral presheath and the part of the perturbed wall sheath in which quasi-neutrality is substantially violated. The parameters of the wall sheath where quasi-neutrality is significantly violated depend on the ionization rate much less strongly than the corresponding parameters of the quasi-neutral presheath. We have determined the relation for concentration of charged particles in the unperturbed plasma from the ion saturation current considering the actual ion energy distribution function in the plasma as well as ionization in the presheath and the part of the perturbed wall sheath in which quasi-neutrality is violated significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.