Abstract
The paper presents an experimental verification of Prigogine-Glansdorff’s theorem for evolution of complex biological systems and verification of Prigogine´s theorem for an open nonequilibrium thermodynamic (biological) systems. Entropy can be represented as a value that indicates how many different states are in the system, but it does not represent if they are stable, i.e. it is not linked to the concept of chaos, order and disorder act as deterministic and non-deterministic state of the system. Thus, we found that the conditions of Prigogine-Glansdorff’s theorem for studying the biosystems don’t suite because it is common (except for tremorogramm’s parameters of the spring period) that the entropy of parameters of tremorogramms and myograms statistically doesn’t change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.