Abstract

In current conditions, the necessity to produce many high-precision tooling and machines has increased many times over. That is why the improvement of such products manufacture becomes of paramount importance due to the increasing requirements imposed on them. The existing approaches to ensuring the quality and accuracy of high-precision products are not universal and not always can be implemented when producing high-precision goods. For a comprehensive solution to this problem, the authors proposed using an integrated approach – the complex of formalized design procedures of the system for accounting of the requirements to the high-precision products assembly when designing the manufacturing methods of machining. However, for the establishment of relations between the process design and designing preproduction of multi-product manufacture, the transition to the assessment of the production manufacturability of goods and deeper integration of this system into the structure of the system of automated sequencing of manufacturing methods, it is necessary to search for ways to improve the existing approaches of the developed system. The paper considered in detail the enlarged block of design procedures for the analysis of requirements to the assembly of high-precision products, since this stage is directly related to the designing preproduction, and the initial data obtained in the course of its implementation ensure the quality of choice of rational manufacturing methods of machining of parts. The authors propose the techniques to improve mathematical, methodological, and algorithmic support of this enlarged block implementation. The introduction of the proposed solutions will allow performing effectively the design dimensional analysis of a high-precision assembly unit in an automated mode and forming a set of assembly requirements, which, as a result, will allow ensuring the expansion of digitalization of the process design and designing preproduction and the transition to intelligent production systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.