Abstract
We consider the synthesis of a hybrid neural convolutional network with the modular topology-based architecture, which allows to arrange a parallel convolutional computing system to combine both the energy transfer and data processing, in order to simulate complex functions of natural biological neural populations. The system of interlayer neural commutation, based on the distributed resonance circuits with the layers of electromagnetic metamaterial between the inductive elements, is a base for simulation of the interaction between the astrocyte networks and the neural clusters responsible for information processing. Consequently, the data processing is considered both at the level of signal transmission through neural elements, and as interaction of artificial neurons and astrocytic networks ensuring their functioning. The resulting two-level neural system of data processing implements a set of measures to solve the issue based on the neural network committee. The specific arrangement of the neural network enables us to implement and configure the educational procedure using the properties absent in the neural networks consisting of neural populations only. The training of the convolutional network is based on a preliminary analysis of rhythmic activity, where artificial astrocytes play the main role of interneural switches. The analysis of the signals moving through the neural network enables us to adjust variable components to present information from training bunches in the available memory circuits in the most efficient way. Moreover, in the training process we observe the activity of neurons in various areas to evenly distribute the computational load on neural network modules to achieve maximum performance. The trained and formed convolutional network is used to solve the problem of determining the optimal path for the object moving due to the energy from the environment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.