Abstract

We study the evolution of the photospheric magnetic field at the early stage of active region development. We use data on longitudinal component of the magnetic field and line-of-sight velocities from SOHO/MDI and SDO/HMI. The visual inspection of 48 cases of birth of active regions and the detailed analysis of the magnetic flux dynamics in 4 active regions have shown that at the time of emergence of a new magnetic field, the field of the following polarity is the first to be detected in the photosphere. The flux asymmetry of the leading and following polarities persists for several tens of minutes. The observed asymmetry of magnetic fluxes supports the results of the numerical simulation of emergence of the active region magnetic field in the upper layers of the convective zone, which has been carried out by Rempel and Cheung [2014].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.