Abstract

Thermoplastics in the recycling process are characterized by mechanical and thermo-oxidative degradation, which leads to deterioration of the operational properties of finished plastic products. A possible option for giving the secondary raw material optimal characteristics during processing may be the inclusion of aluminosilicate microspheres and modifiers that increase the fluidity of the melt. This paper presents the results of the study of rheological and physico-mechanical properties of polymer composites based on secondary polypropylene filled with aluminosilicate microspheres in the presence of stearic acid. It is shown that stearic acid increases the fluidity of the melt, improves technological performance during mechanical processing, including promotes uniform distribution of particles of aluminosilicate microspheres in the polymer volume. The optimal concentration of stearic acid is 0.5 % by weight, at which there is a maximum increase in the melt flow rate, a decrease in tensile strength of no more than 16 %, as well as an increase in resistance to dynamic impact without a significant change in the elastic modulus characterizing the stiffness of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.