Abstract

For the first time, a simplified model of the redistribution of vibrational energy in a MOS transistor has been developed and analyzed. The transistor is turned on in open drain mode and in inverter mode. After calculating the parameters, the numerical radio profiles of the signals of the electrical component of electromagnetic radiation, created by the key unit itself, were obtained. An experiment was carried out to register the vibrational redistribution of energy in a MOS transistor using a specially designed sample. The results of registration of a series of radio profiles of signals with the configuration of the universal ports of the sample of a digital device are presented, and a correlation assessment of the reproducibility of the experiment is carried out. The correlation of the radio profiles of the signals obtained as a result of modeling and as a result of the experiment is not lower than 0.93. This testifies to the correctness of the developed models. On the basis of the presented development, a correlation assessment of the radiation of a reference sample and a sample with a slight deviation of parameters has been carried out. Even with a slight change in the parameters of the key node associated with degradation of the gate dielectric, the cross-correlation in the normal state and with a defect r < 0.7, which indicates a significant difference in the signal radio profile of normal functioning and with deterioration of parameters. The proposed models can be used in passive radio-wave technical diagnostics based on the registration of the electrical component of electromagnetic radiation generated by the radio-electronic devices themselves and opens up new possibilities for diagnosing malfunctions at the early stages of their occurrence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call