Abstract

Unlike antibiotics and heavy metals, nucleic acids exist in the aquatic environment as a part of prokaryotic and eukaryotic microorganisms (bacteria, fungi, etc.) rather than in a free form. In this regard, the most important primary stage of sample preparation of an object for the quantitative analysis of DNA and RNA in natural and wastewaters includes membrane ultrafiltration of an aqueous sample, followed by its sorption preconcentration on a solid phase carrier. The efficiency of ultrafiltration and subsequent sorption of nucleic acids from natural and wastewaters largely depends on the material of filters, membranes, and sorbents. Polymeric materials are widely used due to their special properties: the affinity of polymers for biological objects, the ability to create pores of any required size, good mechanical properties and resistance to the extraction of microorganisms captured. The paper reviews the 15-year-old scientific literature on filtering, membrane and sorption polymeric materials used to extract nucleic acids from aqueous media and preserve them. Polymeric sorbents for collecting and concentrating DNA and RNA from the liquid phase, as well as storing nucleic acids, are covered. It has been found that ultrafiltration is used at a relatively low concentration of the analyzed object, followed by extraction of the substance using commercially available kits, including cartridges. Sorption (solid-phase concentration) is used to extract nucleic acids at their relatively high concentration in the analyte. The main polymeric materials used include cellulose and its derivatives (nitrocellulose, cellulose acetate, mixed cellulose nitrate–acetate, diethylaminoethylcellulose, polyethyleneiminocellulose), agarose, dextran, polyestersulfone, polycarbonate, fluoroplasts, polyacrylates and polymethacrylates, polyaramids, polyamides, polyvinyl alcohol, polyaniline, polycaprolactone, polyacrylamide and polymethacrylamide, polystyrene. Chitosan, modified polycaprolactone, and magnetic particles coated with polydopamine, polyethyleneimine, polyvinylpyrrolidone, polystyrene, or polyamidoamine dendrimer are considered as promising polymers for further research in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call