Abstract

Purpose: Problem of the H-polarized plane wave diffraction by the structure, which consists of two semi-infinite strip gratings, is considered. The gratings are placed in the same plane. The gap between the gratings is arbitrary. The purpose of the paper is to develop the operator method to the structures, which scattered fields have both discrete and continuous spatial spectra. Design/methodology/approach: In the spectral domain, in the domain of the Fourier transform, the scattered field is expressed in terms of the unknown Fourier amplitude. The field reflected by the considered structure is represented as a sum of two fields of currents on the strips of semi-infinite gratings. The operator equations are obtained for the Fourier amplitudes. These equations use the operators of reflection of semi-infinite gratings, which are supposed to be known. The field scattered by a semi-infinite grating can be represented as a sum of plane and cylindrical waves. The reflection operator of a semi-infinite grating has singularities at the points, which correspond to the propagation constants of plane waves. Consequently, the unknown Fourier amplitudes of the fi eld scattered by the considered structure also have singularities. To eliminate these latter, the regularization procedure has been carried out. As a result of this procedure, the operator equations are reduced to the system of integral equations containing the integrals, which should be understood as the Cauchy principal value and Hadamar finite part integrals. The discretization has been carried out. As a result, the system of linear equations is obtained, which is solved with the use of the iterative procedure. Findings: The operator equations with respect to the Fourier amplitudes of the field scattered by the structure, which consists of two semi-infinite gratings, are obtained. The computational investigation of convergence has been made. The near and far scattered fields are investigated for different values of the grating parameters. Conclusions: The effective algorithm to study the fields scattered by the strip grating, which has both discrete and continuous spatial spectra, is proposed. The developed approach can be an effective instrument in solving a series of problems of antennas and microwave electronics. Key words: semi-infinite grating, operator method, singular integral, hypersingular integral, regularization procedure

Highlights

  • ÎÏÅÐÀÒÎÐÍÈÉ ÌÅÒÎÄ Â ÇÀÄÀ×І ÏÐÎ ÄÈÔÐÀÊÖІÞ H-ÏÎËßÐÈÇÎÂÀÍÎЇ ÕÂÈËІ ÍÀ ÄÂÎÕ ÎÄÍÀÊÎÂÈÕ ÍÀÏІÂÍÅÑÊІÍ×ÅÍÍÈÕ ÐÅØІÒÊÀÕ, ÐÎÇÒÀØÎÂÀÍÈÕ Â ÎÄÍІÉ ÏËÎÙÈÍІ

  • which consists of two semi-infinite strip gratings

  • The gratings are placed in the same plane

Read more

Summary

Îïåðàòîðíі ðіâíÿííÿ

Амплітуди A ( ) пов’язані між собою наступними операторними рівняннями:. де оператори s описують зміну амплітуди поля зі зміщенням системи координат у позитивному (негативному) напрямку осі Oy на величину. Де оператори s описують зміну амплітуди поля зі зміщенням системи координат у позитивному (негативному) напрямку осі Oy на величину. Рівняння (7), (8) означають, що відбите поле можна представити як суперпозицію поля падаючої хвилі, відбитої ізольованими напівнескінченними решітками (другий доданок), і поля, що випромінюється однією з напівнескінченних решіток і відбивається іншою (перший доданок). Перший доданок описує багаторазові перевідбиття хвиль між решітками. Відбите напівнескінченними решітками, може бути представлене як суперпозиція плоских і циліндричних хвиль. Ядро операторів відбиття R має особливості типу полюс в точках, які відповідають сталим поширення плоских хвиль. Введемо нові оператори R1 , виділивши сингулярну частину з R за формулою [19]. У разі, якщо падаюче поле має вигляд (1), з (7), (8) випливає, що амплітуди A ( ) мають особливості в точках p ( l ).

Ðåãóëÿðèçàöіÿ ñèíãóëÿðíîãî іíòåãðàëà
Ðåãóëÿðèçàöіÿ ãіïåðñèíãóëÿðíîãî іíòåãðàëà
Äèñêðåòèçàöіÿ
Âèñíîâêè

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.