Abstract

The aim of the study is to show that a biometrics-to-access code converter based on large networks of correlation neurons makes it possible to obtain an even longer key at the output while ensuring the protection of biometric data from compromise. The research method is the use of large «wide» neural networks with automatic learning for the implementation of the biometric authentication procedure, ensuring the protection of biometric personal data from compromise. Results of the study - the first national standard GOST R 52633.5 for the automatic training of neuron networks was focused only on a physically secure, trusted computing environment. The protection of the parameters of the trained neural network converters biometrics-code using cryptographic methods led to the need to use short keys and passwords for biometric-cryptographic authentication. It is proposed to build special correlation neurons in the meta-space of Bayes-Minkowski features of a higher dimension. An experiment was carried out to verify the patterns of kkeystroke dynamics using a biometrics-to-code converter based on the data set of the AIConstructor project. In the meta-space of features, the probability of a verification error turned out to be less (EER = 0.0823) than in the original space of features (EER = 0.0864), while in the protected execution mode of the biometrics-to-code converter, the key length can be increased by more than 19 times. Experiments have shown that the transition to the mat space of BayesMinkowski features does not lead to the manifestation of the “curse of dimension” problem if some of the original features have a noticeable or strong mutual correlation. The problem of ensuring the confidentiality of the parameters of trained neural network containers, from which the neural network converter biometrics-code is formed, is relevant not only for biometric authentication tasks. It seems possible to develop a standard for protecting artificial intelligence based on automatically trained networks of Bayesian-Minkowski correlation neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.