Abstract
In this study, we have utilized clay from Pariaman, Indonesia enriched with silica from rice husk ash to produce zeolite through a hydrothermal process. The resulting zeolite is then composited with the most common semiconductor photocatalyst, an anatase titanium oxide, to increase the semiconductor efficiency in terms of particle distribution and light sources activation. From X-Ray Fluorescence (XRF) measurement, it can be seen that the Si/Al mole ratio in the clay has been successfully increased from 1.8 to 2.0. These data are strengthened by the results of X-Ray Diffraction (XRD) analysis which shows the formation of zeolites of several types consisting of zeolite faujasite, P1, sodalite, X, and nu-6. When the synthesized zeolite is mixed with titania anatase, a composite is formed as evidenced by FTIR analysis with the appearance of Si-O-Si and Si-O-Al absorption bands for zeolite and Ti-O-Ti from titania. This zeolite has been shown to reduce the bandgap energy of titanium oxide after the two materials have been composited. Measurements with Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) showed that the TiO2-anatase band gap decreased by about 20 %, from 3.20 to 2.56 eV allowing theoretically the composite to be considered as a promising photocatalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.