Abstract

Some results of the collaborative studies organized by the International Energy Agency (IEA) in the area of technological problems of the fusion radioactive materials management following the withdrawing of replaceable components from the fusion facilities and de-commissioning of these facilities are addressed in this paper. Key issues include clearance conditions, hands-on and remote recycling procedures, radioactive fusion material hazard assessment, and detritiation of activated materials. To broaden the options for fusion de-velopment, researchers examined five potentially alternative high-Z materials: zirconium, niobium, molybdenum, hafnium, and tantalum from four standpoints: neutron-induced activation, sputter erosion/redeposition, plasma transient response and recycling possibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.