Abstract

The authors prove the theorem of existence and uniqueness of the solution, construct an analytical approximate solution in the complex domain for one class of nonlinear differential equations of the third order, the solution of which are discontinuous functions. The solution of the listed mathematical problems is based on the classical approach. Since the existing methods allow obtaining moving singular points only approximately, it is necessary to investigate the effect of a perturbation of a moving singular point on the structure of an analytical approximate solution in the complex domain. Since the existing methods allow obtaining moving singular points only approximately, it is necessary to investigate the effect of a perturbation of a moving singular point on the structure of an analytical approximate solution in the complex domain. A theorem that allows us to determine a priori estimates of the error of the analytical approximate solution is proved. The study applies the classical approach to estimation and illustrates the application of series with fractional negative powers. The article presents the results of numerical experiment confirming the validity of the obtained theoretical position. The technique of optimization of a priori estimates of analytical approximate solution in the vicinity of perturbed value of moving singular point using a posteriori estimates is presented. The results allow expanding the classes of nonlinear differential equations used as a basis for mathematical models of processes and phenomena in various fields of human activity. In particular, the class of equations under consideration can be applied in the study of wave processes in elastic beams, which is confirmed by theoretical data

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.