Abstract

In this part of the paper, a new phenomenological approach to the description of the phase transformation of a liquid into a two-component gas mixture is proposed on the basis of the distribution function of the investigated macroscopic physical quantity from the thermodynamic variables (parameters) of the system. The equivalence of the mechanical and energy characteristics of the thermodynamic equilibrium on the interface between the liquid and gas phases is demonstrated. The conditions of the phase equilibrium between a liquid and a gas mixture at the superficial layer under conditions of evaporation or condensation are recorded. By the graphical methods the relative changes (displacement or fluctuations) of thermodynamic quantities in the phase transformation are depicted. In the model approximation, distortion of the meniscus for surface of the phase separation between the liquid and gas phases is calculated according to the balance (equilibrium) relations. References Braut, R. (1967). Fazovyie perehodyi. Moskva: Mir. Patashinskiy, A.Z., .Pokrovskiy, V.L. (1982). Fluktuatsionnaya teoriya fazovyih perehodov. Moskva: Nauka. Zubarev, D. N. (1971). Neravnovesnaya statisticheskaya termodinamika. M.: Nauka. Beck, С., Schlogl, I. (1997). Thermodynamic of chaotic systems. New York: Cambridge University Press. Holubets, T. V. (2016). Ymovirnistni metody opysu rivnovazhnoho termodynamichnoho stanu dvokhkomponentnykh vzaiemodiiuchykh sumishei. Fiz.-mat. mod. ta inf. tekhnolohii, 23, 61-79. Holubets, T. V. (2017). Doslidzhennia rivnovazhnoho stanu vody i dvokomponentnoi hazovoi sumishi sukhoho povitria ta vodianoi pary pry poverkhni rozdilu faz v umovakh fazovoho peretvorennia (Chastyna I). Fiz.-mat. mod. ta inf. tekhnolohii, 27, 51-71. CK12 Fundation. (2017). FlexBook Chemistry Concepts Retrieved from https://www.ck12.org/book/CK-12- Chemistry-Concepts-Intermediate (Intermediate: Section 17 Thermochemistry, Chapter 11). Sedov, L.I. (1973). Mehanika sploshnoy sredyi. (Vol. 1-2). Moskva: «Nauka». Bazarov, I. P. (1991). Termodinamika. Moskva: «Nauka». Shambadal, P. (1967). Razvitie i prilozheniya ponyatiya entropii. Moskva: «Nauka». Reid, R.C., Prausnit, J.M, Poling, B.E. (1987). The properties of gases&liquids. New York: McGraw-Hill. Abamson,A.W., Gast, A.P. (1997). Physical chemistry of surfaces. New York —Toronto: John Wiley & Sons. Shtrauf, E. F. (1949).Molekulyarnaya fizika. Leningrad-Moskva: Gos. izd. tehn.-teor. lit. Holovko, M, Shmotolokha, V., Patsahan, T. (2014). Hard convex body fluids in random porous media: Scaled particle theory. Journ. of Mol. liquid, 189(30), 115-133.https://doi.org/10.1016/j.molliq.2013.05.030 Kalyuzhnyi, Yu. V., Protsykevytch, I. A., Cummings, P. I. (2007). Thermodynamic properties and liquid-gas phase diagram of the dipolar hard-sphere fluid. Europhys. Letters Association, 80(5), 56002(1-6).https://doi.org/10.1209/0295-5075/80/56002 Thermophysical properties of humid air. M. CONDE ENGINEERING Zurich 2007. Retrieved from https://www.mrc-eng.com. ASHRAE-HANDBOOK-Fundamentals Atlanta 2017. Retrieved from https://www.ashrae.org/resources-publications/handbook/2017-ashrae-handbook-fundamentals. The Engineering ToolBox. Retrieved from http://www.engineeringtoolbox.com.

Highlights

  • Властивості приповерхневого шару в області флуктуацій молярного об’єму є недостатньо дослідженими або практично відсутніми

  • RT M eff від термодинамічних змінних системи: PG — значення тиску у пароповітряній газовій суміші, 1 У даних дослідженнях молярні частки компонент рідини y і газової суміші x на поверхні розмежування фаз задовільняють умову неперервності, а саме x y, де {, a} - індекс компоненти

  • В модельном приближении рассчитано искривление мениска поверхности раздела фаз между жидкой и газовой фазами согласно полученных (равновесных) балансовых соотношений

Read more

Summary

Об’єкт дослідження

У першій частині статті [6] було запропоновано опис стану термодинамічної (статичної) рівноваги між рідкою і газовою (бінарною сумішшю сухого повітря і водяної пари) фазами. В цій роботі для рівняння стану отримано вираз у вигляді диференційної форми x. Від термодинамічних змінних (параметрів) системи ( тут r —прихована теплота випаровування): PG — значення тиску у пароповітряній газовій суміші,. ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології 2018, вип.

M a і узагальнену
M M a
Part II
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call