Abstract
A new configuration base on the Sabalan geothermal wells is proposed to utilize two wells with different thermodynamic properties in Sabalan region in Iran and generate more power as well as supply of natural gas from liquefied natural gas. A Kalina cycle and Transcritical CO2 Rankine cycle are using Sabalan geothermal wells as a heat source and liquefied natural gas as a thermal heat sink. A comprehensive parametric study is investigated to understand the characteristics of the system. The results show that the thermal and exergy efficiencies can be increased by increasing separator 1&2 pressures. Also decreasing the higher pressure of the Kalina cycle and pinch point temperature of evaporators lead to increasing the net output power, thermal and exergy efficiencies. Additionally, exergy analysis results showed that the highest exergy destruction rate belongs to the heat exchanger 1&2. Optimization of the proposed cycle is performed by using genetic algorithm method, and it is observed in the optimal condition that the net output power, thermal efficiency, and exergy efficiency can be obtained as 30610 kW, 29.16%, and 56.92%, respectively. The results of this study indicate that the net output power and thermal efficiency is better performance compared to the previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.