Abstract

Carbon dioxide photocatalytic reduction is one of the promising methods used to produce a wide range of renewable hydrocarbon fuels using sunlight in the presence of photocatalysts. In this study, a series of nickel-doped titanium dioxide samples (0.5, 1, and 1.5 wt%) Were synthesized by Sol-gel method. After performing photocatalytic carbon dioxide recovery experiments and finding the optimum percentage of nickel, titanium dioxide sample with 1 wt% nickel (TNi1) showed the highest photocatalytic activity. Then, by impregnation method, 3% by weight of Cu (1, 2 and 3 wt%) was loaded onto the TNi1 structure. Finally, the sample loaded with 1 wt% copper on titanium dioxide doped with 1 wt% Ni (1Cu/TNi1) showed the highest photocatalytic activity and methane production was 12.6 μmol/gcat that was about 4 times higher than the amount of methane produced in the presence of pure TiO2. The synthesized nanophotocatalysts were characterized using X-ray diffraction (XRD) analysis, diffuse reflectance spectroscopy (DRS) analysis and photoluminescence (PL) analysis. Also, their specific surface area was measured by BET method and morphology of the particles was investigated by field emission scanning electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.