Abstract
Использование многочлена Тейлора второй степени при аппроксимации производных конечными разностями приводит ко второму порядку аппроксимации традиционного метода сеток при численном интегрировании краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. В работе при исследовании краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений четвертого порядка с переменными коэффициентами рассмотрен предложенный ранее метод численного интегрирования, использующий средства матричного исчисления, в котором аппроксимация производных конечными разностями не использовалась. Согласно указанному методу, при составлении системы разностных уравнений может быть выбрана произвольная степень многочлена Тейлора в разложении искомого решения задачи в ряд Тейлора. В работе возможные граничные условия дифференциальной краевой задачи записаны как в виде производных степеней от нуля до трех, так и в виде линейных комбинаций этих степеней. Краевая задача названа симметричной, если количества граничных условий в левой и правой границах совпадают и равны двум; в противном случае задача названа несимметричной. Для дифференциальной краевой задачи составлена ее аппроксимирующая разностная краевая задача в виде двух подсистем: в первую подсистему вошли уравнения, при построении которых не были использованы граничные условия краевой задачи; во вторую подсистему вошли четыре уравнения, при построении которых были использованы граничные условия задачи. Теоретически выявлены закономерности между порядком аппроксимации разностной краевой задачи и степенью используемого многочлена Тейлора. Установлено следующее: а) порядок аппроксимации первой и второй подсистем пропорционален степени используемого многочлена Тейлора; б) порядок аппроксимации первой подсистемы меньше степени многочлена Тейлора на две единицы при ее четном значении и меньше на три единицы при ее нечетном значении; в) порядок аппроксимации второй подсистемы меньше степени многочлена Тейлора на три единицы независимо как от четности или нечетности этой степени, так и от степени старшей производной в граничных условиях краевой задачи. Вычислен порядок аппроксимации разностной краевой задачи со всеми возможными комбинациями граничных условий. Теоретические выводы подтверждены численными экспериментами.
Highlights
A numerical comparison of different methods applied to the solution of problems with non local boundary conditions // Appl
The use of the second degree Taylor polynomial in approximation of derivatives by finite difference method leads to the second order approximation of the traditional grid method for numerical integration of boundary value problems for non-homogeneous linear ordinary differential equations of the second order with variable coefficients
The study considers a previously proposed method of numerical integration using matrix calculus which didn’t include the approximation of derivatives by finite difference method for boundary value problems of non-homogeneous fourth-order linear ordinary differential equations with variable coefficients. According to this method, when creating a system of difference equations, an arbitrary degree of the Taylor polynomial can be chosen in the expansion of the sought-for solution of the problem into a Taylor series
Summary
А. Ильичева, Численное интегрирование матричным методом и оценка порядка аппроксимации разностных краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений четвертого порядка с переменными коэффициентами, Вестн. Использование многочлена Тейлора второй степени при аппроксимации производных конечными разностями приводит ко второму порядку аппроксимации традиционного метода сеток при численном интегрировании краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. В работе при исследовании краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений четвертого порядка с переменными коэффициентами рассмотрен предложенный ранее метод численного интегрирования, использующий средства матричного исчисления, в котором аппроксимация производных конечными разностями не использовалась. А. Численное интегрирование матричным методом и оценка порядка аппроксимации разностных краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений четвертого порядка с переменными коэффициентами // Вестн.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.