Alpha-glucosidase (maltase, sucrase, isomaltase and glucoamylase) activities which are involved in carbohydrate metabolism are present in human intestinal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). Hence, these proteins are important targets to identify drugs against postprandial hyperglycemia thereby for diabetes. To find natural-based drugs against MGAM and SI, Artocarpus heterophyllus leaf was explored for MGAM and SI inhibition in in vitro and in silico. A. heterophyllus leaf aqueous active fraction (AHL-AAF) was prepared using Soxhlet extraction followed by silica column chromatography. The phytoconstituents of AHL-AAF were determined using LC-ESI-MS/MS. AHL-AAF showed dose-dependent and mixed inhibition against maltase (IC50 = 460 µg/ml; Ki = 300 µg/ml), glucoamylase (IC50 = 780 µg/ml; Ki = 480 µg/ml), sucrase (IC50 = 900 µg/ml, Ki = 504 µg/ml) and isomaltase (IC50 = 860 µg/ml, Ki = 400 µg/ml). AHL-AAF phytoconstituents interaction with N-terminal (Nt) and C-terminal (Ct) subunits of human MGAM and SI was analyzed using induced-fit docking, molecular dynamics (MD), and binding free energy calculation. In docking studies, rhamnosyl hexosyl methyl quercetin (RHMQ), P-coumaryl-O-16-hydroxy palmitic acid (PCHP), and spirostanol interacted with active site amino acids of human MGAM and SI. Among these RHMQ stably interacted with all the subunits (Nt-MGAM, Ct-MGAM, Nt-SI and Ct-SI) whereas PCHP with Ct-MGAM and Nt-SI during MD analysis. In molecular docking, the docking score of RHMQ with NtMGAM, CtMGAM, NtSI and CtSI was −8.48, −12.88, −11.98 and −11.37 kcal/mol. The docking score of PCHP for CtMGAM and NtSI was −8.59 and −8.4 kcal/mol, respectively. After MD simulation, the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values further confirmed the stable protein-ligand interaction. The RMSD value of all the complexes were around 2.5 Å and the corresponding RMSF values were also quite low. In MM/GBSA analysis, the involvement of Van der Waals and lipophilic energy in the protein/ligand interactions are understood. Further binding free energy for Nt-MGAM-PCHP, Nt-MGAM-RHMQ, Nt-SI-PCHP, Nt-SI-RHMQ, Ct-MGAM-PCHP, Ct-MGAM-RHMQ and Ct-SI-RHMQ complexes was found to be −24.94, −46.60, −46.56, −44.48, −40.3, −41.86 and −19.39 kcal/mol, respectively. Altogether, AHL-AAF showed inhibition of α-glucosidase activities of MGAM and SI. AHL-AAF could be further studied for its effect on diabetes in in vivo.
Read full abstract