IntroductionThe efficiency of zinc oxide (ZnO) nanoparticles for environmental decontamination is limited by their reliance on ultraviolet (UV) light and rapid charge carrier recombination. Carbon doping has been proposed to address these challenges by potentially enhancing visible light absorption and charge separation. ObjectivesThis study aims to introduce a novel, single-step synthesis method for carbon-doped ZnO (C-Z) nanoparticles, leveraging the decomposition of zinc nitrate hexahydrate and furfural under a nitrogen atmosphere to improve photocatalytic activity under visible light. MethodsA series of C-Z variants (C-Z-1 to C-Z-5) and an undoped sample (ZnO-0) were synthesized. The influence of furfural on the synthesis process and doping mechanism was analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–visible diffuse reflectance spectroscopy (DRS). ResultsXPS confirmed the integration of carbon within the ZnO matrix, and XRD indicated increased lattice dimensions owing to doping. DRS revealed bandgap narrowing, suggesting enhanced charge separation. Among the variants, C-Z-3 significantly outperformed the others, showing a 12-fold increase in the photocatalytic degradation rate of Rhodamine B compared to undoped ZnO. ConclusionThe developed single-step synthesis method for C-Z nanoparticles represents a major advancement in materials engineering for ecological applications. The enhanced photocatalytic activity under visible light, as demonstrated by C-Z-3, underscores the potential of these nanoparticles for environmental decontamination.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access