Polyether-ether-ketone (PEEK) and polyimide (PI) are two kinds of engineering polymer materials widely used as roller bearing cages and rings under extreme environment because of their noise reduction and corrosion resistance properties. The Si3N4 ceramic is the most common ball bearing material. Many current engineering applications of ball bearings require aqueous lubrication. Therefore, this study presents the aqueous lubrication of tribopairs formed by PEEK and PI material sliding against Si3N4 ceramic. Experimental results show that two tribopairs exhibited the similar tribological properties under the dry condition. Water as a lubricant for the PI–Si3N4 tribopair pairs effectively reduces both friction coefficients by 35.5% and wear rates by 32%. The water absorption of PI induces better tribological properties by changing the tribopair surface properties. In addition, the dimples appearing on the PI tribopair surface under water generate additional hydrodynamic lubrication and further improve the friction properties of surface. The PEEK–Si3N4 tribopair shows similar friction coefficients under two kinds of environments. The wear rates under water are approximately more than two times of that under dry sliding. However, water inhibits the appearance of the crush phenomenon and enhances the carrying capacity of the tribopair. Energy dispersive spectroscopy and X-ray diffraction spectra demonstrate no chemical corrosion. The 3D profiler and SEM morphologies illustrate that the transfer film would be formed from the surface of PEEK under water but hindered under dry friction. Overall, the PI–Si3N4 tribopair exhibits better properties than PEEK under water and is promising for future applications in the bearing industry.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access