BackgroundChicken embryos emerge from their shell by the piercing movement of the hatching muscle. Although considered a key player during hatching, with activity that imposes a substantial metabolic demand, data are still limited. The study provides a bioenergetic and transcriptomic analyses during the pre-post-hatching period.MethodsWeight and morphology alongside content determination of creatine and glycogen were analysed. Transcriptome identified differentially expressed genes and enriched biological processes associated with hatching muscle development, catabolism, and energy provision. Using gene set enrichment, we followed the dynamics of gene-sets involved in energy pathways of oxidative phosphorylation, protein catabolism, glycolysis/gluconeogenesis, and glycogen metabolism.ResultsResults show several significant findings: (A) Creatine plays a crucial role in the energy metabolism of the hatching muscle, with its concentration remaining stable while glycogen concentration is depleted at hatch and placement. (B) The hatching muscle has the capacity for de-novo creatine synthesis, as indicated by the expression of related genes (AGAT, GAMT). (C) Transcriptome provided insights into genes related to energy pathways under conditions of pre-hatch oxygen and post-hatch glucose limitations (oxidative phosphorylation: NDUF, MT-ND, SDH, UQCR, COX, MT-CO, ATP5, MT-ATP; glycolysis/gluconeogenesis: FBP,G6PC, PFKM; glycogen metabolism: PPP1, PYGL, GYG1). (D) The post-hatch upregulation of protein catabolic processes genes (PSMA, RNF, UBE, FBX), which align with the muscle's weight dynamics, indicates a functional shift from movement during hatching to lifting the head during feeding.ConclusionsThere is a dynamic metabolic switch in the hatching muscle during embryo-to-hatchling transition. When glycogen concentration depletes, energy supply is maintained by creatine and its de-novo synthesis. Understanding the hatching muscle's energy dynamics is crucial, for reducing hatching failures in endangered avian species, and in domesticated chickens.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access