In this study, biomass-derived carbon material obtained from Lyocell fibers was first utilized as a gas sensor. The impacts of varying pyrolytic carbonization temperatures and pregrinding treatments on the structure, surface morphology, elemental composition, and gas sensitivity of the samples were thoroughly examined. The CL-500 sensor can realize rapid detection of trimethylamine with a high response (12.79k%, 500 ppm) and high selectivity at room temperature; the response/recovery times are 10 s and 2 s, respectively, and the theoretical detection limit is 3.96 ppm. Moreover, after four months, the response of the CL-500 sensor to trimethylamine fluctuated by less than 9.7 % compared with that of the fresh sensor, indicating good stability. It also shows good recovery after seven consecutive response-recovery cycles. Additionally, the CL-500 sensor has promising applications in real-life fish freshness monitoring. Theoretical calculations indicate that the introduction of trace amounts of Na enhances the sensing performance of this sensor for target gases. This study serves as a guide for developing cost-effective, high-performance gas sensors, promoting the efficient and high-value utilization of biomass waste.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access