The thrust vector control of a rocket engine by disturbing the supersonic flow in its nozzle is used for missile development for various purposes in different countries. Disturbance of the supersonic flow in the jet engine nozzle can be caused by various obstacles on the nozzle wall: solid obstacle, liquid or gas jet, combinations of solid obstacle with injected jets. The simplest and most effective way to create a disturbance is to disturb it by setting a solid cylindrical obstacle on the nozzle wall. The high efficiency is explained by the lack of the working fluid consumption on board the aircraft to create a control force, or its minimum amount necessary to protect the obstacle from the high-temperature oncoming gas flow in the rocket engine nozzle. This paper presents the study results of gas flow simulation with cylindrical obstacle perturbation on the wall of the Laval rocket engine nozzle in its subsonic and supersonic parts. The optimal placement in the nozzle is determined to obtain the maximum lateral control force. As a result of research, it was found that the perturbation of a supersonic flow in a rocket engine nozzle by a cylindrical obstacle has practically the same character when its position changes along the length of the nozzle. In the subsonic part of the nozzle in the median plane, the perturbed pressure on the wall has a positive sign, and on the obstacle wall its sign-alternating. When an obstacle is in the subsonic part of the nozzle, the integral value of the lateral force is negative in comparison with positive for the supersonic part.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access