The release of algae-derived dissolved organic matter (ADOM) significantly increased in serious eutrophication waters, posing great threats to drinking water safety. Thus, the molecular composition decipherment is urgently in need. However, due to unsatisfactory pretreatment and ionization effects, the application of Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) on ADOM was limited. Therefore, the effects of pretreatment methods (cartridge type and loading) during solid-phase extraction (SPE) and electrospray ionization (ESI) modes with FT-ICR-MS on the molecular composition of ADOM were evaluated. The results showed compared with silica-based octadecyl (C18) cartridge, styrene-divinylbenzene polymer (PPL) cartridge exhibited higher recovery efficiency and retained more saturated and oxygenated compounds, such as carbohydrate-like and tannin-like. Furthermore, the recovery efficiency decreased with increasing loading, and hydrophilic and high-oxygenated carbohydrate-like and tannin-like were continuously replaced by hydrophobic and low-oxygenated aliphatic and aromatic compounds. Moreover, compared to negative ESI mode, the addition of positive ESI mode increased the molecular chemodiversity, especially more lipid-like and protein-like compounds. Thus, we proposed < 1:500 DOC/PPL mass ratio during SPE and dual ESI modes coupled with FT-ICR-MS could identify ADOM molecules more comprehensively. This work contributes to more comprehensive understanding of the molecular composition of ADOM and provides more references for pretreatment and characterization strategies of severely eutrophic waters.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access