the article analyzes the research and works on processing Sensor data processing and navigation for mobile objects, including those with automatic control. automatic control. It is pointed out the necessity of integration of solutions based on vision and neural networks, taking into account the state of the environment. on the basis of vision and neural networks, taking into account the state of the environment. environment. The description of the algorithm and methods for complexing data received from sensor sensors of the onboard vision system of the rolling stock. Within the framework of the algorithm work the trajectory data\ processing: confirmation (removal) of the observed objects, construction of their trajectories, estimation of velocities and coordinates, formation of the list of global objects. To calculate the object motion model, an extended Kalman filter is applied Kalman filter, Hungarian algorithm and calculation of the Mahalanobis distance. Detailed The stages of detection, tracking and identification of obstacle objects are described in detail, as well as determination of their parameters (class, coordinates and velocity). The Experimental indicators used in this study. Relevance relevance and shown practical applicability of the described approach for the tasks of automatic control of rolling stock in the conditions of a digital railroad
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access