Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors. To quantitatively assess the individual contributions of human ASCT1 and ASCT2 to the fusogenic activity of Syncytin-1, we developed a model system where the ASCT1 and ASCT2 double knockout was rescued by ectopic expression of either ASCT1 or ASCT2. We demonstrated that ASCT2 was required for Syncytin-1 binding, cellular entry, and cell-to-cell fusion, while ASCT1 was not involved in this receptor interaction. We experimentally validated the ASCT1-ASCT2 heterotrimers as a possible explanation for the previous misidentification of ASCT1 as a receptor for Syncytin-1. This redefinition of receptor specificity is important for proper understanding of Syncytin-1 function in normal and pathological pregnancy.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access