Eukaryotic cells are equipped with multiple mechanosensory systems and perceive a wide range of mechanical stimuli from the environment. However, cell-level responses to audible range of acoustic waves, which transmit feeble yet highly frequent physical perturbations, remain largely unexplored. Here, we established a direct sound emission system with a vibrational transducer, and acoustic waves at frequency 440 Hz, 14 kHz, and white noise were transmitted to the murine C2C12 myoblasts at 100 Pa intensity. After 2 and 24 h sound emission, 42 and 145 differentially expressed genes, respectively, were identified using RNA-sequencing. Both cell- and sound-related factors important for inducing gene responses were further investigated. The activation of prostaglandin-endoperoxide synthase 2/cyclooxygenase-2 (Ptgs2/Cox-2), a high and immediate sound-responding gene, is dependent on focal adhesion kinase activation and mediates sound-triggered gene responses by activating prostaglandin E2 synthesis. Adipocyte cells exhibited prominently high sound responses, and their differentiation was significantly suppressed by continuous or periodic acoustic stimulation. Collectively, these findings redefine acoustic waves as cellular stimulators and provide new avenues for applying acoustic techniques in biosciences.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
9026 Articles
Published in last 50 years
Related Topics
Articles published on Focal Adhesion Kinase
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
8695 Search results
Sort by Recency