Knee rheumatoid arthritis (RA) is the highly prevalent, chronic, progressive condition in the world. To diagnose this disease in the early stage in detail analysis with magnetic resonance (MR) image is possible. The imaging modality feature allows unbiased assessment of joint space narrowing (JSN), cartilage volume, and other vital features. This provides a fine-grained RA severity evaluation of the knee, contrasted to the benchmark, and generally used Kellgren Lawrence (KL) assessment. In this research, an intelligent system is developed to predict KL grade from the knee dataset. Our approach is based on hybrid deep learning of 50 layers (ResNet50) with skip connections. The proposed approach also uses Adam optimizer to provide learning linearity in the training stage. Our approach yields KL grade and JSN for femoral and tibial tissue with lateral and medial compartments. Furthermore, the approach also yields area under curve (AUC) of 0.98, accuracy 96.85%, mean absolute error (MAE) 0.015, precision 98.31%, and other commonly used parameters for the existence of radiographic RA progression which is improved than the existing state-of-the-art.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access