The degree of tree curvature exerts a significant influence on the utilization of forestry resources. This study proposes an enhanced quantitative structural modeling (QSM) method, founded upon terrestrial laser scanning (TLS) point cloud data, for the precise extraction of 3D curvature characteristics of tree trunks. The conventional approach operates under the assumption that the tree trunk constitutes an upright rotating body, thereby disregarding the tree trunk’s true curvature morphology. The proposed method is founded on the classical QSM algorithm and introduces two zoom factors that can dynamically adjust the fitting parameters. This improvement leads to enhanced accuracy in the representation of tree trunk curvature and reduced computational complexity. The study utilized 146 sample trees from 13 plots in Jixi, Anhui Province, which were collected and pre-processed by TLS. The study combines point cloud segmentation, manual labeling of actual curvature and dual-factor experiments, and uses quadratic polynomials and simulated annealing algorithms to determine the optimal model factors. The validation results demonstrate that the enhanced method exhibits a greater degree of concordance between the predicted and actual curvature values within the validation set. In the regression equation, the coefficient of the two-factor method for fitting a straight line is 0.95, which is substantially higher than the 0.75 of the one-factor method. Furthermore, the two-factor model has an R2 of 0.21, indicating that the two-factor optimization method generates a significantly smaller error compared to the one-factor model (with an R2 of 0.12). In addition, this study discusses the possible reasons for the error in the results, as well as the shortcomings and outlook. The experimental results demonstrate the augmented method’s capacity to accurately reconstruct the 3D curvature of tree trunks in most cases. This study provides an efficient and accurate method for conducting fine-grained forest resource measurements and tree bending studies.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
870 Articles
Published in last 50 years
Articles published on 3D Curves
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
857 Search results
Sort by Recency