Sort by
Photocatalytic activity of Fe3O4–Fe2O3 particles supported on mordenite under visible light exposure for methylene blue degradation

Dyes pollution is a serious environmental problem and heterogeneous catalysis has been proposed as a remediation method. In this study, a set of catalysts of synthetic mordenite with iron oxides was synthesized by a simple chemical co-precipitation method assisted by subsequent thermal treatment with an oxidation process. Physicochemical characterization of prepared materials was performed by a variety of techniques, including XRD, SEM, EDS, SBET, UV–Vis DR, and XPS. Photocatalytic methylene blue (MB) degradation by the synthesized catalyst was evaluated with visible light excitation. From the studied set of catalysts, the sample prepared with a thermal treatment at 100 °C in air atmosphere for 3 h was capable of degrading ~ 90% of MB after 120 min with visible light of λ = 420 nm exposition and a small portion of H2O2 added. The catalyst used three processes to degrade MB: (1) adsorption of organic residues in the mordenite matrix support for electrostatic interactions, (2) photocatalysis heterogeneous reaction with visible light and (3) Fenton reaction catalyst with a small portion to H2O2 by Fe3O4–Fe2O3 presence. The catalytic efficiency to dye degradation was improved by a simple and economical thermal treatment without changing reaction conditions like pH, temperature, dose, or other. Studied mordenite iron oxide catalysts can be retrieved and reused at least five times without noticeable degradation, taking advantage of their magnetic properties. These catalysts could be proposed an economical, simple, and non-toxic alternative for eliminating organic dye pollution using visible light or solar irradiation in wastewater remediation related to textile, food, and pharmaceutical industries.

Open Access
Relevant
Impacts of sunlight exposure on physicochemical parameters, potential toxic metals, and microbial characteristics of sachet drinking water sold in Calabar metropolis, Nigeria

Poor handling of potable water is a well-known route of contamination. Despite this, Nigeria’s most consumed packaged potable water called “sachet” or “pure water” is still poorly handled with long hours of exposure to sunlight which may affect its quality. This study examined the potential deterioration of the sachet water quality (potential toxic metals and bacteriological), and the health implication posed by long-time exposure to sunlight. Collected water samples were subjected to physiochemical analysis, metal analysis, risk assessment, and microbiological examination. Three sachet water brands (n = 4 bags per brand) exposed to sunlight daily for 14, 28, and 42 days were analysed for potentially toxic metals, and health risk assessments (Average daily dose-ADD, hazard quotient-HQ, hazard index-HI, and carcinogenic risk-CR). The physicochemical, and microbiological (total heterotrophic bacteria count-THBC, and total coliform count-TCC) parameters were equally analysed using the Kirby Bauer and pour plate technique. In all brands, the levels of physicochemical parameters (except pH), and potential toxic metals were comparatively higher than the control in an exposure time-dependent fashion. Furthermore, all the exposed samples failed to meet the safety limits of the WHO, and national standards (NAFDAC and NDSWQ) for drinking water. Among the metals, zinc was the most ingested metal in all the brands. The ADD, HQ, and HI evaluations revealed that consuming the exposed water could lead to higher accumulation of Cr, Cd, Pb, As, and Ni in the body following exposure. The CR of Cr, As, and Ni after exposure to sunlight were > than the safe value (10–4), implying the likelihood of cancer after over 60 years. Microbial counts increased with the length of exposure, and all the isolates showed pathogenicity and multidrug resistance. The potential health risk inherent in sachet water after exposure to sunlight has significant health implications for consumers.

Open Access
Relevant
Design and implementation of a wireless communication-based sprinkler irrigation system with seed sowing functionality

This study addresses the critical health risks faced by farmers owing to the use of harmful chemical pesticides in agriculture. The primary objective is to create an effective solution to minimize these risks and reduce the use of pesticides. To achieve this, a smart irrigation system has been implemented by connecting various sensors, such as moisture sensors and thermal imagers through the Internet of Things. These sensors collect vital data on crop moisture levels and thermal images that are securely stored in a cloud-based system. The data collected were subjected to extensive analysis to ensure accurate pesticide use and to identify specific pests affecting crops. In addition, the smart irrigation system includes an Android phone for remote monitoring and pesticide spray detection, thus offering a convenient remote-based operating system for farmers. This innovative system not only proved to be cost-effective but also proved to be significantly more efficient than traditional methods, resulting in reduced labor costs. Importantly, it not only addressed the health risks associated with pesticide use but also led to a significant reduction in overall pesticide use in agriculture. This research provides a comprehensive and effective approach to address the health risks farmers face from harmful pesticides, thereby promoting sustainable and safe farming practices for the future.

Open Access
Relevant
Evaluation of adsorption and corrosion inhibition properties of Solanum Macrocarpon leaves extract on mild steel in sulphuric acid solutions

Corrosion of mild steel (MS) in industries has become a menace that has led to the use of organic green inhibitors from plant origin, which is seen as a cheap, eco-friendly substitute for inorganic inhibitors. This work employed Solanum macrocarpon (SM) methanol leaf extract as a green inhibitor using a gravimetric method at 303–323 K, respectively. The phytochemical screening was done using standard methods to identify the phytochemical compounds in the leave extract. The Fourier transform infrared (FTIR) analysis was also done to elucidate the functional groups that contain heteroatoms responsible for the inhibition efficiency. The effectiveness of the inhibition efficiency increased with concentration and decreased with rising temperature. The results demonstrated that Solanum macrocarpon leaf methanol extract is an effective mild steel corrosion inhibitor in 0.5 M H2SO4. 95% optimum inhibition efficiency (I.E) was observed at 0.5% w/v concentration for 303 K. The inhibition potential was attributed to the phytochemical compounds in the leaf extract, which contain polar functional groups and hetero-atoms in their structures. The Ea\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${E}_{a}$$\\end{document} and ΔGads\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta {G}_{ads}$$\\end{document} showed that the adsorption mechanism followed physisorption. The results showed the potential use of SM methanol extract as a corrosion inhibitor in mild steel, which can decrease corrosion in industries.

Open Access
Relevant
Investigation of graded channel effect on analog/linearity parameter analysis of junctionless surrounded gate graded channel MOSFET

Linearity analysis of nanoscale devices is a vital issue as nonlinearity behavior is exhibited by them when employed in circuits for microwave and RF applications. In this work, a junctionless surrounded gate-graded channel MOSFET (JLSGGC MOSFET) is investigated thoroughly to analyze its linearity performance with the help of ATLAS tool of technology computer-aided design. The proposed device is compared systematically with the conventional junstionless surrounded gate MOSFET(JLSG MOSFET) to investigate their linearity. To evaluate the linearity, the figure of merits such as higher-order transconductance (Gm1, Gm2), intercept points(VIP2, VIP3, IIP3), IMD3 and 1 dB—compression point(P1 dB) are considered. The linearity of our proposed device improves by 35.5% in view of the compression point in comparison to JLSG MOSFET before the threshold voltage region of operation. The simulation results reveal a substantial enhancement in the linearity performance of the JLSGGC MOSFET. The improved linearity behavior of JLSGGC MOSFET makes it suitable for wireless RF and system-on-chip applications.Analog/RF performance is studied in terms of intrinsic gain (Gm/Gds), cut-off frequency (fT),maximum frequency of oscillation (fmax).Improved analog/RF performances of JLSGGC MOSFET suggests its applications in high frequency operating range.

Open Access
Relevant