Sort by
MotionID: Towards practical behavioral biometrics-based implicit user authentication on smartphones

Traditional one-time authentication mechanisms cannot authenticate smartphone users’ identities throughout the session – the concept of using behavioral-based biometrics captured by the built-in motion sensors and touch data is a candidate to solve this issue. Many studies proposed solutions for behavioral-based continuous authentication; however, they are still far from practicality and generality for real-world usage. To date, no commercially deployed implicit user authentication scheme exists because most of those solutions were designed to improve detection accuracy without addressing real-world deployment requirements. To bridge this gap, we tackle the limitations of existing schemes and reach toward developing a more practical implicit authentication scheme, dubbed MotionID, based on a one-class detector using behavioral data from motion sensors when users touch their smartphones. Compared with previous studies, our work addresses the following challenges: ① Global mobile average to dynamically adjust the sampling rate for sensors on any device and mitigate the impact of using sensors’ fixed sampling rate; ② Over-all-apps to authenticate a user across all the mobile applications, not only on-specific application; ③ Single-device-evaluation to measure the performance with multiple users’ (i.e., genuine users and imposters) data collected from the same device; ④ Rapid authentication to quickly identify users’ identities using a few samples collected within short durations of touching (1–5 s) the device; ⑤ Unconditional settings to collect sensor data from real-world smartphone usage rather than a laboratory study. To show the feasibility of MotionID for those challenges, we evaluated the performance of MotionID with ten users’ motion sensor data on five different smartphones under various settings. Our results show the impracticality of using a fixed sampling rate across devices that most previous studies have adopted. MotionID is able to authenticate users with an F1-score up to 98.5% for some devices under practical requirements and an F1-score up to roughly 90% when considering the drift concept and rapid authentication settings. Finally, we investigate time efficiency, power consumption, and memory usage considerations to examine the practicality of MotionID.

Just Published
Relevant
Feasibility and reliability of peercloud in vehicular networks: A comprehensive study

Advanced computing capabilities embedded in modern vehicles enable them to accommodate a variety of intelligent transportation systems and real-world applications that help improve driving safety and compliance with road regulations. However, some of these applications are computationally demanding, and the local processing capabilities of vehicles may not always be enough to support them. To address this issue, existing research has proposed offloading the excessive workload to other computing facilities, such as nearby base stations, roadside units, or remote cloud servers. Still, these facilities have several limitations, including frequent unavailability, congestion, and high fees. In this paper, we explore a more pervasive and cost-effective solution: offloading excessive workloads to nearby peer vehicles via peer-to-peer connections. This approach, referred to as peercloud-vehicle, is an extension of the peercloud approach, which has been proposed for mobile social networks in the literature. The objective of this work is to have a comprehensive study on the feasibility and reliability of vehicle-to-vehicle offloading. First, we analyze two real-world vehicular network datasets to study the robustness of the vehicle contacts and estimate contact durations with deep learning-based regression methods. Second, we design reliable vehicle-to-vehicle offloading approaches based on two optimization objectives: min-delay task offloading to minimize the overall execution delay, and cost-aware task offloading to minimize the cost of task offloading. Experimental results based on real-world datasets demonstrate that peercloud-vehicle significantly outperforms existing approaches.

Relevant
Energy-efficient indoor hybrid deployment strategy for 5G mobile small-cell base stations using JAFR Algorithm

In the context of 5th-generation (5G) mobile communication technology, deploying indoor small-cell base stations (SBS) to serve visitors has become common. However, indoor SBS is constrained by factors such as service capacity, signal interference, and structural layout. Merchants within large buildings frequently host diverse activities to attract visitors, significantly increasing indoor traffic and crowd-gathering phenomenon. Consequently, SBS faces challenges of excessive energy consumption, compromised communication quality, and an inability to provide service to all visitors. Merchants aim to deploy SBS that can effectively curtail energy consumption costs while fulfilling visitor needs. However, due to the intermittent nature of high footfall situations, employing additional fixed SBS is not economically viable. Therefore, we address the challenge of maintaining service quality and mitigating energy consumption of SBS during footfall fluctuations by proposing an SBS model with a dynamic sleep mechanism. We simulate the internal structure of a three-dimensional (3D) building and the footfall over time. Within this model, we leverage the flexibility of mobile small-cell base stations (MSBS) to seamlessly traverse service regions. We compute the transmission power and location of SBS and MSBS based on energy efficiency (EE), combining their strengths to tackle the challenge. This approach maintains SBS communication quality while curbing energy consumption. We attain the optimal hybrid deployment strategy by enhancing the adaptive differential evolution with optional external archive (JADE) algorithm and incorporating the final fitness formula, the adaptive ranking mutation operator strategy, and the disorder replacement strategy (DRS) in it to form the proposed joint adaptive fusion with ranking (JAFR) algorithm. Our comparative simulation experiments demonstrate the effectiveness of JAFR in addressing the challenges against conventional methods, recent differential evolution algorithms, and mobile base station (MBS) deployment approaches posed by this model. The results indicate that the JAFR algorithm yields superior SBS deployment strategies in most cases.

Relevant
Quantum-resistance blockchain-assisted certificateless data authentication and key exchange scheme for the smart grid metering infrastructure

In the contemporary landscape of energy infrastructure, the “smart-grid metering infrastructure (SGMI)” emerges as a pivotal entity for efficiently monitoring and regulating electricity generation in response to client behavior. Within this context, SGMI addresses a spectrum of pertinent security and privacy concerns. This study systematically addresses the inherent research problems associated with SGMI and introduces a lattice-based blockchain-assisted certificateless data authentication and key exchange scheme. The primary aim of this scheme is to establish quantum resistance, conditional anonymity, dynamic participation, and the capacity for key updates and revocations, all of which are imperative facets for the robust implementation of mutual authentication within SGMI. Our scheme harnesses blockchain technology to mitigate the vulnerabilities associated with centralized administrative control, thus eliminating the risk of a single-point failure and distributed denial-of-service attacks. Furthermore, our proposed scheme is meticulously designed to accommodate the resource constraints of smart meters, characterized by lightweight operations. Rigorous formal security analysis is conducted within the framework of the quantum-accessible random oracle model, fortified by ’history-free reduction,’ substantiating its security credentials. Complementing this, simulation orchestration serves to underscore its superiority over existing methodologies, particularly in the realms of energy efficiency, data computation, communication, and the costs associated with private key storage.

Relevant
Seeing the world from its words: All-embracing Transformers for fingerprint-based indoor localization

In this paper, we present all-embracing Transformers (AaTs) that are capable of deftly manipulating attention mechanism for Received Signal Strength (RSS) fingerprints in order to invigorate localizing performance. Since most machine learning models applied to the RSS modality do not possess any attention mechanism, they can merely capture superficial representations. Moreover, compared to textual and visual modalities, the RSS modality is inherently notorious for its sensitivity to environmental dynamics. Such adversities inhibit their access to subtle but distinct representations that characterize the corresponding location, ultimately resulting in significant degradation in the testing phase. In contrast, a major appeal of AaTs is the ability to focus exclusively on relevant anchors in RSS sequences, allowing full rein to the exploitation of subtle and distinct representations for specific locations. This also facilitates disregarding redundant clues formed by noisy ambient conditions, thus enhancing accuracy in localization. Apart from that, explicitly resolving the representation collapse (i.e., none-informative or homogeneous features, and gradient vanishing) can further invigorate the self-attention process in transformer blocks, by which subtle but distinct representations to specific locations are radically captured with ease. For that purpose, we first enhance our proposed model with two sub-constraints, namely covariance and variance losses at the Anchor2Vec. The proposed constraints are automatically mediated with the primary task towards a novel multi-task learning manner. In an advanced manner, we present further the ultimate in design with a few simple tweaks carefully crafted for transformer encoder blocks. This effort aims to promote representation augmentation via stabilizing the inflow of gradients to these blocks. Thus, the problems of representation collapse in regular Transformers can be tackled. To evaluate our AaTs, we compare the models with the state-of-the-art (SoTA) methods on three benchmark indoor localization datasets. The experimental results confirm our hypothesis and show that our proposed models could deliver much higher and more stable accuracy.

Open Access
Relevant
A framework for offloading and migration of serverless functions in the Edge–Cloud Continuum

Function-as-a-Service (FaaS) has emerged as an evolution of traditional Cloud service models, allowing users to define and execute pieces of codes (i.e., functions) in a serverless manner, with the provider taking care of most operational issues. With the unending growth of resource availability in the Edge-to-Cloud Continuum, there is increasing interest in adopting FaaS near the Edge as well, to better support geo-distributed and pervasive applications. However, as the existing FaaS frameworks have mostly been designed with Cloud in mind, new architectures are necessary to cope with the additional challenges of the Continuum, such as higher heterogeneity, network latencies, limited computing capacity.In this paper, we present an extended version of Serverledge, a FaaS framework designed to span Edge and Cloud computing landscapes. Serverledge relies on a decentralized architecture, where each FaaS node is able to autonomously schedule and execute functions. To take advantage of the computational capacity of the infrastructure, Serverledge nodes also rely on horizontal and vertical function offloading mechanisms. In this work we particularly focus on the design of mechanisms for function offloading and live function migration across nodes. We implement these mechanisms in Serverledge and evaluate their impact and performance considering different scenarios and functions.

Relevant
Inferring in-air gestures in complex indoor environment with less supervision

People have high demands for comfort and technology in indoor environments. Gestures, as a natural and friendly human computer interaction (HCI) method, have received widespread attention and have been the subject of many research studies. Traditional approaches are based on wearable devices and cameras, which can be cumbersome to operate and infringe upon users’ privacy. Millimeter-wave (mmWave) radar avoids these problems by detecting gestures in a noninvasive manner. However, it encounters practical challenges in complex indoor environments, such as dynamic disturbance from surroundings, variable usage conditions and diverse gesture patterns, which conventionally require considerable manual effort to address. In this paper, we attempt to minimize human supervision and propose a noninvasive gesture recognition method named RaGe that involves a commercial mmWave indoor radar. First, a parameter optimization framework considering gesture prior constraints is proposed for radar configuration, which functions to weaken the disturbance from surroundings. Second, we alleviate data shortages in variable usage conditions and achieve low-cost data augmentation by applying affine transformations. Third, we combine deformable convolution operations with an unsupervised attention mechanism, thus exploring the intrinsic features involved in diverse gesture patterns. Experimental results show that RaGe is able to recognize 7 gestures with 99.3% accuracy and less human supervision, surpassing the state-of-the-art methods in comparative experiments.

Relevant