Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
CIRCLE-Seq for Interrogation of Off-Target Gene Editing.

Circularization for In Vitro Reporting of Cleavage Effects by Sequencing (CIRCLE-seq) is a novel technique developed for the impartial identification of unintended cleavage sites of CRISPR-Cas9 through targeted sequencing of CRISPR-Cas9 cleaved DNA. The protocol involves circularizing genomic DNA (gDNA), which is subsequently treated with the Cas9 protein and a guide RNA (gRNA) of interest. Following treatment, the cleaved DNA is purified and prepared as a library for Illumina sequencing. The sequencing process generates paired-end reads, offering comprehensive data on each cleavage site. CIRCLE-seq provides several advantages over other in vitro methods, including minimal sequencing depth requirements, low background, and high enrichment for Cas9-cleaved gDNA. These advantages enhance sensitivity in identifying both intended and unintended cleavage events. This study provides a comprehensive, step-by-step procedure for examining the off-target activity of CRISPR-Cas9 using CIRCLE-seq. As an example, this protocol is validated by mapping genome-wide unintended cleavage sites of CRISPR-Cas9 during the modification of the AAVS1 locus. The entire CIRCLE-seq process can be completed in two weeks, allowing sufficient time for cell growth, DNA purification, library preparation, and Illumina sequencing. The input of sequencing data into the CIRCLE-seq pipeline facilitates streamlined interpretation and analysis of cleavage sites.

Read full abstract
NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins.

Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on 15N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard 15N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR 15N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.

Read full abstract
CRISPR-Cas9 Mediated Gene Deletion in Human Pluripotent Stem Cells Cultured Under Feeder-Free Conditions.

The CRISPR-Cas9 system for genome editing has revolutionized gene function studies in mammalian cells, including stem cells. However, the practical application of this technique, particularly in pluripotent stem cells, presents certain challenges, such as being time- and labor-intensive and having low editing efficiency. Here, we describe the generation of a CRISPR-mediated gene knockout in a human embryonic stem cell (hESC) line stably expressing sgRNAs for the L2HGDH gene, using a highly efficient and stable lentiviral-mediated gene delivery system. The sgRNAs targeting exon 1 of the L2HGDH gene were chemically synthesized and cloned into the lentiCRISPR v2-puro vector, which combines the constitutive expression of sgRNAs with Cas9 in a highly efficient single-vector system to achieve higher lentiviral titers for hESC infection and stable selection using puromycin. Puromycin-selected cells were further expanded, and single-cell clones were obtained using the limited dilution method. The single clones were expanded, and several homozygous knockout clones for the L2HGDH gene were obtained, as confirmed by a 100% reduction in L2HGDH expression using Western blot analysis. Furthermore, using MSBSP-PCR, the CRISPR mutation site was mapped upstream of the PAM recognition sequence of Cas9 in the selected homozygous clones. Sanger sequencing was performed to analyze the exact insertions/deletions, and functional characterization of the clones was conducted. This method produced a significantly higher percentage of homozygous deletions compared to previously reported non-viral gene delivery methods. Although this report focuses on the L2HGDH gene, this robust and cost-effective approach can be used to create homozygous knockouts for other genes in pluripotent stem cells for gene function studies.

Read full abstract
Establishment of A Mouse Model of Aqueous Deficiency Dry Eye.

Dry eye disease is a prevalent condition affecting 5%-50% of the global population. Animal model investigations play a crucial role in understanding its underlying mechanisms. Therefore, we developed a mouse model of dry eye disease by surgically removing both the extraorbital lacrimal glands (ELG) and intraorbital lacrimal glands (ILG) to investigate the ocular surface pathology in the context of aqueous deficiency dry eye. Two weeks post operation, the mice exhibited severe dry eye manifestations, including reduced tear secretion, corneal epithelial irregularities, positive fluorescein sodium staining, and neovascularization. Histological examination via hematoxylin and eosin staining revealed inflammatory cell infiltration and corneal epithelium dysplasia. Immunofluorescence staining and quantitative reverse-transcription polymerase chain reaction revealed decreased expression of the normal corneal epithelial biomarkers K12 and Pax6 and increased expression of Sprr1b in the corneal epithelium. These ocular manifestations indicated abnormal corneal epithelial differentiation. Furthermore, immunofluorescence staining of Ki67 revealed the increasing cell proliferation. In conclusion, the ELG plus ILG excision model proved suitable for studying changes in the ocular surface and elucidating the mechanisms underlying aqueous deficiency dry eye.

Read full abstract
Application of DNA Barcoding to Identify Medicinal Plants.

Medicinal plants are valuable resources globally and are used worldwide to maintain health and treat disease; however, the presence of adulteration obstructs their development. DNA barcoding, a technique for species identification by standard DNA regions, facilitates prompt and accurate identification of traditional medicinal plants. The process of DNA barcoding entails six basic steps: 1) processing the medicinal plants, 2) extracting high-quality total DNA from the medicinal plants using centrifugal column method, 3) amplifying target DNA region internal transcribed spacer 2 (ITS2) with universal primers of plants and performing Sanger sequencing, 4) splicing and aligning sequence to obtain the target sequence, 5) matching the barcode sequence against the barcode library for identification, 6) aligning sequence, comparing intraspecific and interspecific variation, constructing phylogenetic neighbor-joining tree. As shown in the results, the universal primer can amplify the target region. Basic Local Alignment Search Tool (BLAST) demonstrates the percentage identified was 100%, and the neighbor-joining tree demonstrates that the splicing sequences were clustered with the A. sinensis OR879715.1 clade, and the clade support value is 100. This protocol provides a reference for applying DNA barcoding technology as an effective method to identify medicinal plants and adulterants.

Read full abstract
A Rat Model of Compound Acne.

Acne vulgaris is a prevalent chronic skin condition characterized by the presence of comedones, papules, and pustules on the face, neck, and chest. To simulate the inflammation of acne vulgaris, this protocol details an approach to establish a compound acne rodent model by inducing acne inflammation in rat ears using oleic acid and Cutibacterium acnes (C. acnes).Rats were randomly divided into four groups: the normal control group (NC), ears treated with oleic acid group (OA), ears treated with C. acnes group (C. acnes), ears treated with oleic acid and C. acnes (OA + C. acnes). To mimic excessive sebum production, oleic acid was smeared on the ears of rats in OA and OA + C. acnes groups for 25 days. From days 21 to 25, C. acnes suspension was injected intradermally into the ears of rats in the C. acnes and OA + C. acnes groups to aggravate the acne inflammation. Ear thickness was measured weekly as a gauge of inflammation severity. Gross observation, hematoxylin and eosin staining, and immunohistochemistry (IHC) were conducted and the results showed that the ears of the OA group and the OA + C. acnes group were thickened and indurated, accompanied by erythema and the presence of comedones. Additionally, papules were observed in C. acnes and OA + C. acnes groups. The histopathology exhibited hyperkeratinization and expanded infundibulum of the hair follicles in OA and OA + C. acnes groups. Infiltration of inflammatory cells and abscesses were found in the dermis of C. acnes and OA + C. acnes groups. The IHC results confirmed increased levels of tumor necrosis factor (TNF)-α in the dermis of C. acnes and OA + C. acnes groups. All the above results collectively indicated the successful establishment of the compound acne rodent model.

Read full abstract