Sort by
Global Discontinuity: Time for a Paradigm Shift in Global Scenario Analysis

The evolutionary paths of social-ecological systems comprise periods of structural continuity punctuated by moments of convulsive change. Various forms of systemic global shock could materialize in the coming decades, triggered by the climate crisis, social disruption, economic breakdown, financial collapse, nuclear conflict, or pandemics. The unfolding COVID-19 pandemic stands as a real-time example of an interruption of historic continuity. More hopefully, deep institutional and cultural shifts could rapidly usher in more resilient forms of global civilization. These plausible possibilities challenge scenario studies to spotlight discontinuous futures, an imperative that has not been adequately met. Several factors—for example, gradualist theories of change, scientific reticence, the lure of quantitative tractability, embeddedness in policymaking processes—have rendered mainstream scenario analysis ill-suited to the task. The emphasis on continuity fails to alert decision makers and the public to the risks and opportunities latent in our singular historical moment. A shift to a paradigm that foregrounds discontinuity is long overdue, calling for efforts to broaden the base of persons involved; devote more attention to balancing narrative storytelling and a broader range of quantitative methods; and apply and develop methods to explicitly consider discontinuities in global scenario development.

Open Access
Relevant
Flight photon counting electron multiplying charge coupled device development for the Roman Space Telescope coronagraph instrument

We describe the development of flight electron multiplying charge coupled devices (EMCCDs) for the photon-counting camera system of a coronagraph instrument (CGI) to be flown on the 2.4-m Nancy Grace Roman Space Telescope. Roman is a NASA flagship mission that will study dark energy and dark matter, and search for exoplanets with a planned launch in the mid-2020s. The CGI is intended to demonstrate technologies required for high-contrast imaging and spectroscopy of exoplanets, such as high-speed wavefront sensing and pointing control, adaptive optics with deformable mirrors, and ultralow noise signal detection with photon counting, visible-sensitive (350 to 950 nm) detectors. The camera system is at the heart of these demonstrations and is required to sense both faint and bright targets (10 − 4 − 107 counts-s − 1) adaptively at up to 1000 frames-s − 1 to provide the necessary feedback to the instrument control loops. The system includes two identical cameras, one to demonstrate faint light scientific capability, and the other to provide high-speed real-time sensing of instrument pointing disturbances. Our program at the Jet Propulsion Laboratory (Pasadena, California, United States) has evaluated the low-signal performance of radiation-damaged commercial EMCCD sensors and used those measurements as a basis for targeted radiation hardening modifications developed in partnership with the Open University (Milton Keynes, United Kingdom) and Teledyne-e2v (Chelmsford, United Kingdom). A pair of EMCCDs with test features was then developed and their low signal performance is reported here. The program has resulted in the development of a flight version of the EMCCD with low signal performance improved by more than a factor of three over the commercial one after exposure to 2.6 × 109 protons-cm − 2 (10 MeV equivalent). The flight EMCCD sensors are contributed by ESA through a contract with Teledyne-e2v (Chelmsford, United Kingdom). We will describe the program requirements, sensor design, test results and metrics used to evaluate photon counting performance.

Open Access
Relevant
Simulating Reflected Light Coronagraphy of Earth-like Exoplanets with a Large IR/O/UV Space Telescope: Impact and Calibration of Smooth Exozodiacal Dust

Observing Earth-like exoplanets orbiting within the habitable zone of Sun-like stars and studying their atmospheres in reflected starlight requires contrasts of ∼1e–10 in the visible. At such high contrast, starlight reflected by exozodiacal dust is expected to be a significant source of contamination. Here, we present high-fidelity simulations of coronagraphic observations of a synthetic solar system located at a distance of 10 pc and observed with a 12 m and an 8 m circumscribed aperture diameter space telescope operating at 500 nm wavelength. We explore different techniques to subtract the exozodi and stellar speckles from the simulated images in the face-on, the 30 deg inclined, and the 60 deg inclined case and quantify the remaining systematic noise as a function of the exozodiacal dust level of the system. We find that in the face-on case, the exozodi can be subtracted down to the photon noise limit for exozodi levels up to ∼1000 zodi using a simple toy model for the exozodiacal disk, whereas in the 60 deg inclined case this only works up to ∼50 zodi. We also investigate the impact of larger wave front errors and larger system distance, finding that while the former has no significant impact, the latter has a strong (negative) impact. Ultimately, we derive a penalty factor as a function of the exozodi level and system inclination that should be considered in exoplanet yield studies as a realistic estimate for the excess systematic noise from the exozodi.

Open Access
Relevant