Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
The investigation of basic microfluidic elements in LTCC structures

PurposeThe purpose of this study is to design, fabricate and investigate low-temperature co-fired ceramic (LTCC) structures with integrated microfluidic elements. Special attention is paid to the study of fluid properties of micro-channels and microvalves, which are important constitutive parts of both, microfluidic systems and individual microfluidic devices.Design/methodology/approachSeveral test patterns of fluid channels with different geometry and different types of valves were designed and realized in LTCC technology. All test structures were tested under the flow of two fluids (liquids): water and isopropyl alcohol. Flow rates at different applied pressure were measured and hydrodynamic resistance and diode effect were calculated.FindingsThe investigation of the channels showed that viscosity of fluidic media has significant influence on the hydrodynamic resistance in channels with rectangular cross-section, while this effect is small on channels with square cross-section. The viscosity also has a decisive influence on the diode effect of different shape of valves, and therefore, it is important in the selection of the valve in practical applications.Research limitations/implicationsIn this work, the investigation of hydrodynamic resistance of channels and diode effect of passive valves is limited on selected geometry and only on two fluidic media and two applied pressures. All these and some other parameters have a significant influence on fluidic properties, but this will be the topic of the next research work, which will be supported by numerical modelling.Practical implicationsThe presented results are useful in the future designing process of LTCC-based microfluidic devices and systems.Originality/valueMicrofluidic in the LTCC structures is an unconventional use of this technology. Therefore, the fluid properties are relatively unsearched. On the other hand, the global use of microfluidic devices and systems is growing rapidly in various applications. They are mostly made by polymer materials, however, in more demanding applications; ceramic is a useful alternative.

Read full abstract
Design and integration of a piezoelectric vibrating device in an LTCC structure

PurposeIn this contribution, the design and integration of a piezoelectric vibrating device into low-temperature, co-fired ceramic (LTCC) structures are presented and discussed. The mechanical vibration of the diaphragm was stimulated with a piezoelectric actuator, which was integrated onto the diaphragm. Three different methods for the integration were designed, fabricated and evaluated.Design/methodology/approachThe vibrating devices were designed as an edge-clamped diaphragm with an integrated piezoelectric actuator at its centre, whose role is to stimulate the vibration of the diaphragm via the converse piezoelectric effect. The design and feasibility study of the vibrating devices was supported by analytical methods and finite-element analyses.FindingsThe benchmarking of the ceramic vibrating devices showed that the thick-film piezoelectric actuator responds weakly in comparison with both the bulk actuators. On the other hand, the thick-film actuator has the lowest dissipation factor and it generates the largest displacement of the diaphragm with the lowest driving voltage. The resonance frequency of the vibrating device with the thick-film actuator is the most sensitive for an applied load (i.e. mass or pressure).Research limitations/implicationsResearch activity includes the design and the fabrication of a piezoelectric vibrating device in the LTCC structure. The research work on the piezoelectric properties of integrated piezoelectric actuators was limited.Practical implicationsPiezoelectric vibrating devices were used as pressure sensors.Originality/valuePiezoelectric vibrating devices could be used not only for pressure sensors but also for other type of sensors and detectors and for microbalances.

Read full abstract
Estimation of the long-term stability of piezoresistive LTCC pressure sensors by means of low-frequency noise measurements

In this paper we present the results of an investigation of the long-term stability of piezoresistive LTCC-based pressure sensors with the main emphasis on the effects of accelerated ageing. Noise spectroscopy was considered as a possible method for predicting the stability of the sensors’ characteristics. The experiments showed that the stability of the sensors’ offset voltage clearly relates to the low-frequency noise of the output signal: a lower noise level corresponds to a better long-term stability. An additional important finding is that the accelerated ageing that was carried out through the pressure cycling does not cause any significant increase in the sensors’ signal noise. This result suggests that the performed pressure loadings do not introduce some critical cracks in the thick-film sensing resistors, which may adversely influence the sensors’ stability. Moreover, the experiments revealed that the poor stability of the sensors, which was manifested in noticeable changes in the offset voltage and the sensitivity of some sensors after the overload pressure cycles, comes from defects that are not detectable using typical characterisation measurements and long-term stability tests. Since the unstable sensors always have a higher low-frequency noise of the output voltage in comparison with the stable sensors, the noise measurements can be described as a successful pre-screening test for a relatively quick assessment of the sensors’ long-term stability.

Read full abstract