Sort by
Surface texture heterogeneity in maculated bird eggshells

Many of the world's 10 000 bird species lay coloured or patterned eggs. The large diversity of eggshell patterning among birds, achieved through pigment, has been attributed to a few selective agents such as crypsis, thermoregulation, egg recognition, mate signalling, egg strength and protecting the embryo from UV. Pigmentation may influence the texture of eggshells, which in turn may be important for dealing with water and microbes. We measured surface roughness (Sa, nm), surface skewness (Ssk) and surface kurtosis (Sku), which describe different aspects of surface texture, across 204 bird species with maculated (patterned) eggs and 166 species with immaculate (non-patterned) eggs. Using phylogenetically controlled analyses, we tested whether maculated eggshells have different surface topography between the foreground colour and background colour, and between the background colour of maculated eggshells and the surface of immaculate eggshells. Secondly, we determined to what extent variation in eggshell pigmentation of the foreground and background colour is determined by phylogenetic relatedness, and whether certain life-history traits are important predictors of eggshell surface structure. We show that the surface of maculated eggs consists of a rougher foreground pigment compared to the background pigment across 71% of the 204 bird species (54 families) investigated. Species that lay immaculate eggs showed no difference in surface roughness, kurtosis or skewness compared to background pigment of maculated eggs. The difference in eggshell surface roughness between foreground and background pigmentation was greater among species that occupied dense habitats, such as forests with closed canopies, compared to those that nest in open and semi-open habitats (e.g. cities, deserts, grasslands, open shrubland and seashores). Among maculated eggs, foreground texture was correlated with habitat, parental care, diet, nest location, avian group and nest type, while background texture was correlated with clutch size, annual temperature, development mode and annual precipitation. Surface roughness among immaculate eggs was greatest for herbivores, and species that have larger clutch sizes. Together, this suggests that multiple life-history traits have influenced the evolution of eggshell surface textures in modern birds.

Open Access
Relevant
Towards a leptospirosis early warning system in northeastern Argentina

Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region.

Open Access
Relevant
Biomechanics of the finger pad in response to torsion

Surface skin deformation of the finger pad during partial slippage at finger-object interfaces elicits firing of the tactile sensory afferents. A torque around the contact normal is often present during object manipulation, which can cause partial rotational slippage. Until now, studies of surface skin deformation have used stimuli sliding rectilinearly and tangentially to the skin. Here, we study surface skin dynamics under pure torsion of the right index finger of seven adult participants (four males). A custom robotic platform stimulated the finger pad with a flat clean glass surface, controlling the normal forces and rotation speeds applied while monitoring the contact interface using optical imaging. We tested normal forces between 0.5 N and 10 N at a fixed angular velocity of 20° s-1 and angular velocities between 5° s-1 and 100° s-1 at a fixed normal force of 2 N. We observe the characteristic pattern by which partial slips develop, starting at the periphery of the contact and propagating towards its centre, and the resulting surface strains. The 20-fold range of normal forces and angular velocities used highlights the effect of those parameters on the resulting torque and skin strains. Increasing normal force increases the contact area, the generated torque, strains and the twist angle required to reach full slip. On the other hand, increasing angular velocity causes more loss of contact at the periphery and higher strain rates (although it has no impact on resulting strains after the full rotation). We also discuss the surprisingly large inter-individual variability in skin biomechanics, notably observed in the twist angle the stimulus needs to rotate before reaching full slip.

Open Access
Relevant
Coupling machine learning and epidemiological modelling to characterise optimal fungicide doses when fungicide resistance is partial or quantitative

Increasing fungicide dose tends to lead to better short-term control of plant diseases. However, high doses select more rapidly for fungicide resistant strains, reducing long-term disease control. When resistance is qualitative and complete-i.e. resistant strains are unaffected by the chemical and resistance requires only a single genetic change-using the lowest possible dose ensuring sufficient control is well known as the optimal resistance management strategy. However, partial resistance (where resistant strains are still partially suppressed by the fungicide) and quantitative resistance (where a range of resistant strains are present) remain ill-understood. Here, we use a model of quantitative fungicide resistance (parametrized for the economically important fungal pathogen Zymoseptoria tritici) which handles qualitative partial resistance as a special case. Although low doses are optimal for resistance management, we show that for some model parametrizations the resistance management benefit does not outweigh the improvement in control from increasing doses. This holds for both qualitative partial resistance and quantitative resistance. Via a machine learning approach (a gradient-boosted trees model combined with Shapley values to facilitate interpretability), we interpret the effect of parameters controlling pathogen mutation and characterising the fungicide, in addition to the time scale of interest.

Open Access
Relevant
Collective rotational motion of freely expanding T84 epithelial cell colonies

Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system.

Open Access
Relevant
Autocorrelated measurement processes and inference for ordinary differential equation models of biological systems

Ordinary differential equation models are used to describe dynamic processes across biology. To perform likelihood-based parameter inference on these models, it is necessary to specify a statistical process representing the contribution of factors not explicitly included in the mathematical model. For this, independent Gaussian noise is commonly chosen, with its use so widespread that researchers typically provide no explicit justification for this choice. This noise model assumes ‘random’ latent factors affect the system in the ephemeral fashion resulting in unsystematic deviation of observables from their modelled counterparts. However, like the deterministically modelled parts of a system, these latent factors can have persistent effects on observables. Here, we use experimental data from dynamical systems drawn from cardiac physiology and electrochemistry to demonstrate that highly persistent differences between observations and modelled quantities can occur. Considering the case when persistent noise arises owing only to measurement imperfections, we use the Fisher information matrix to quantify how uncertainty in parameter estimates is artificially reduced when erroneously assuming independent noise. We present a workflow to diagnose persistent noise from model fits and describe how to remodel accounting for correlated errors.

Open Access
Relevant
Stability of multi-layer ecosystems

Community structure is reported to play a critical role in ecosystem stability, which indicates the ability of a system to return to equilibrium after perturbations. However, current studies rely on the assumption that the community consists of only a single-layer structure. In practice, multi-layer structures are common in ecosystems, e.g. the distributions of both microorganisms in strata and fish in the ocean usually stratify into multi-layer structures. Here we use multi-layer networks to model species interactions within each layer and between different layers, and study the stability of multi-layer ecosystems under different interaction types. We show that competitive interactions within each layer have a more substantial stabilizing effect in multi-layer ecosystems relative to their impact in single-layer ecosystems. Surprisingly, between different layers, we find that competition between species destabilizes the ecosystem. We further provide a theoretical analysis of the stability of multi-layer ecosystems and confirm the robustness of our findings for different connectances between layers, numbers of species in each layer, and numbers of layers. Our work provides a general framework for investigating the stability of multi-layer ecosystems and uncovers the double-sided role of competitive interactions in the stability of multi-layer ecosystems.

Open Access
Relevant