Abstract
Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical, cylindrical shells and annular plates is carried out using the variational differential quadrature (VDQ) method. Pasternak-type elastic foundation is taken into consideration. It is assumed that the functionally graded nanocomposite materials have the continuous material properties defined according to extended rule of mixture. Based on the first-order shear deformation theory, the energy functional of the structure is calculated. Applying the generalized differential quadrature method and periodic differential operators in axial and circumferential directions, respectively, the discretized form of the energy functional is derived. Based on Hamilton’s principle and using the VDQ method, the reduced forms of mass and stiffness matrices are obtained. The comparison and convergence studies of the present numerical method are first performed and then various numerical results are presented. It is found that the volume fractions and functionally grading of carbon nanotubes play important roles in the vibrational characteristics of FG-CNTRC cylindrical, conical shells and annular plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.