Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
  • New
  • Open Access Icon
  • Research Article
  • 10.3390/civileng6040058
Analyzing Flexural Integrity Enhancement in Continuous Reinforced Concrete Beams Using NSM-BFRP Ropes: Experimental and Numerical Approach
  • Oct 31, 2025
  • CivilEng
  • Mu’tasim Abdel-Jaber + 2 more

The incorporation of Basalt Fiber-Reinforced Polymer (BFRP) materials marks a significant advancement in the adoption of sustainable and high-performance technologies in structural engineering. This study investigates the flexural behavior of four-meter, two-span continuous reinforced concrete (RC) beams of low and medium compressive strengths (20 MPa and 32 MPa) strengthened or rehabilitated using near-surface mounted (NSM) BFRP ropes. Six RC beam specimens were tested, of which two were strengthened before loading and two were rehabilitated after being preloaded to 70% of their ultimate capacity. The experimental program was complemented by Finite Element Modeling (FEM) and analytical evaluations per ACI 440.2R-08 guidelines. The results demonstrated that NSM-BFRP rope application led to a flexural strength increase ranging from 18% to 44% ductility by approximately 9–11% in strengthened beams and 13–20% in rehabilitated beams, relative to the control specimens. Load-deflection responses showed close alignment between experimental and FEM results, with prediction errors ranging from 0.125% to 7.3%. This study uniquely contributes to the literature by evaluating both strengthening and post-damage rehabilitation of continuous RC beams using NSM-BFRP ropes, a novel and eco-efficient retrofitting technique with proven performance in enhancing structural capacity and serviceability.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/civileng6040056
Parametric Study of the Physical Responses of NSM CFRP-Strengthened RC T-Beams in the Negative Moment Region
  • Oct 20, 2025
  • CivilEng
  • Yanuar Haryanto + 7 more

This study presented a comprehensive finite element (FE) investigation into the flexural behavior of RC T-beams strengthened in the negative moment region using near-surface mounted (NSM) carbon-fiber-reinforced polymers (CFRP) rods. A three-dimensional nonlinear FE model was developed and validated against experimental data, achieving close agreement with normalized mean square error values as low as 0.006 and experimental-to-numerical ratios ranging from 0.95 to 1.04. The validated model was then employed to conduct a systematic parametric analysis considering CFRP rod diameter, concrete compressive strength, longitudinal reinforcement ratio, and FRP material type. The results showed that increasing CFRP diameter from 6 to 10 mm enhanced ultimate load by up to 47.51% and improved stiffness by 1.48 times. Higher concrete compressive strength contributed to stiffness gains exceeding 50.00%, although this improvement was accompanied by reductions in ductility. Beams with reinforcement ratios up to 2.90% achieved peak loads of 309.61 kN, but ductility declined. Comparison among FRP materials indicated that CFRP and AFRP offered superior strength and stiffness, whereas BFRP provided a more balanced combination of strength and deformation capacity.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/civileng6040055
Water Hyacinth Geotextiles as a Nature-Based Solution for Riverbank Protection in the Vietnamese Mekong Delta
  • Oct 19, 2025
  • CivilEng
  • Nguyen Quoc Bang + 5 more

Riverbank erosion in the Vietnamese Mekong Delta (VMD) poses a serious threat to agricultural lands, infrastructure, and local communities. Conventional protective measures, such as synthetic geotextiles and concrete revetments, are often costly and environmentally disruptive. This study investigates the potential of Eichhornia crassipes, a widely available invasive species, commonly known as water hyacinth (WH), to produce biodegradable geotextiles as a low-cost, nature-based solution (NbS) for small-scale riverbank protection. It is the first to test minimally processed WH mats under simulated tidal conditions in the VMD. Laboratory experiments were conducted to evaluate the geotextile’s (1) sediment retention capacity, (2) wave energy reduction, and (3) mechanical durability under wet–dry cycles. Results show that the WH geotextile effectively reduced sediment resuspension, decreasing turbidity levels from 800 FTU (unprotected scenario) to below 50 FTU. The geotextile also attenuated wave energy, reducing significant wave heights by approximately 35–40%. Mechanical testing revealed that the fish bone weaving pattern with adhesive coating achieved the highest tensile strength (8.36 kN/m after 12 wet–dry cycles), while uncoated samples demonstrated higher elongation (up to 61.67%), providing greater flexibility. These demonstrate the feasibility of WH geotextiles as a scalable nature-based solution for erosion-prone tropical deltas. Future studies should focus on field-scale validation, biodegradation rates, and performance optimization for long-term applications.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/civileng6040054
Design and Analysis of Suction Anchor Foundations for an Integrated Offshore Renewable and Aquaculture System
  • Oct 18, 2025
  • CivilEng
  • Peng Gao + 10 more

This study presents the design and performance assessment of suction anchor foundations for an integrated offshore wind–solar–aquaculture system located in Jiangsu Sheyang, China. The project represents one of the first practical demonstrations of coupling renewable energy production with large-scale marine aquaculture on a shared floating platform. Using three-dimensional numerical simulations in FLAC3D and ABAQUS, the study evaluates the anchors’ bearing capacity, structural safety, and fatigue performance under ultimate (ULS), accidental (ALS), and fatigue (FLS) limit states. The analysis incorporates site-specific geotechnical conditions, seabed scour, and installation deviations, providing a realistic framework for foundation design in layered coastal sediments. Results confirm that the suction anchor system meets international safety requirements (DNV, CCS) and maintains robust performance throughout its service life. The findings demonstrate that scour depth and installation accuracy are critical factors governing anchor reliability and offer practical insights for updating offshore foundation design standards in future multifunctional renewable–aquaculture developments.

  • Open Access Icon
  • Research Article
  • 10.3390/civileng6040053
Numerical Study of Blast Load Acting on Typical Precast Segmental Reinforced Concrete Piers in Near-Field Explosions
  • Oct 2, 2025
  • CivilEng
  • Lu Liu + 5 more

Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in intelligent construction, precast segmental bridge piers have become a major trend in social development. There is a lack of full understanding of the anti-blast performance of precast segmental bridge piers. To study the engineering calculation method for blast load acting on a typical precast segmental reinforced concrete (RC) pier in near-field explosions, an air explosion test of the precast segmental RC pier is firstly carried out, then a fluid–structure coupling numerical model of the precast segmental RC pier is established and the interaction between the explosion shock wave and the precast segmental RC pier is discussed. A numerical simulation of the precast segmental RC pier in a near-field explosion is conducted based on a reliable numerical model, and the distribution of the blast load acting on the precast segmental RC pier in the near-field explosion is analyzed. The results show that the reflected overpressure on the pier and the incident overpressure in the free field are reliable. The simulation results are basically consistent with the experimental results (with a relative error of less than 8%), and the fluid–structure coupling model is reasonable and reliable. The explosion shock wave has effects of reflection and circulation on the precast segmental RC pier. In the near-field explosion, the back and side blast loads acting on the precast segmental RC bridge pier can be ignored in the blast-resistant design. The front blast loads can be simplified and equalized, and a blast-resistant design load coefficient (1, 0.2, 0.03, 0.02, and 0.01) and a calculation formula of maximum equivalent overpressure peak value (applicable scaled distance [0.175 m/kg1/3, 0.378 m/kg1/3]) are proposed, which can be used as a reference for the blast-resistant design of precast segmental RC piers.

  • Open Access Icon
  • Research Article
  • 10.3390/civileng6030049
Experimental Study of the Effectiveness of Strengthening Reinforced Concrete Slabs with Thermally Prestressed Reinforcement
  • Sep 13, 2025
  • CivilEng
  • Yannik Schwarz + 2 more

Conventional strengthening measures for existing structures are usually not effective for the self-weight, which accounts for around 70% of the total load in reinforced concrete structures. Therefore, their effect on the overall load-bearing capacity is low. A self-weight-effective alternative for flexural strengthening is the thermal prestressing of additional reinforcement installed on the structure. In this method, reinforcing bars are slotted into the tensile zone, embedded in filler material, and tempered from the outside. They are thermally stretched, and once cooling starts, the bond with the hardened filler prevents re-deformation. The induced prestressing force counteracts dead loads and relieves the tensile zone, making the additional bars effective for the self-weight. In this paper, the effectiveness of the strengthening method is experimentally investigated in the serviceability and the ultimate limit states. Experiments involve strengthening a reinforced concrete beam under load by a thermally prestressed additional bar. Moreover, two reference tests are made to evaluate the method. An unstrengthened beam characterizes the lower capacity limit. Another beam with the same reinforcement amount as the strengthened one, but completely installed at casting, serves as the upper benchmark. All beams are loaded until bending failure. The strengthening method is assessed by means of the load-bearing behavior, deflection, crack development, and the strains in the initial as well as the added reinforcement. The results demonstrate the effectiveness of the strengthening method. The thermally prestressed bar achieves an effective pre-strain of approximately. 0.4‰ by heating at about 70 °C. The induced prestressing force and associated compression reduce tensile cracks by approx. 45% and increase stiffness. The strengthened beam reaches the maximum load of the upper benchmark, but with about 33% less deflection. The filler, which also expands thermally, generates an additional prestressing force that is effective up to about 20% of the load capacity. Beyond this, the filler begins to crack and its effect decreases, but the pre-strain in the reinforcing bar remains until maximum load.

  • Open Access Icon
  • Research Article
  • 10.3390/civileng6030047
Freeze–Thaw Durability of 3D Printed Concrete: A Comprehensive Review of Mechanisms, Materials, and Testing Strategies
  • Sep 6, 2025
  • CivilEng
  • Moein Mousavi + 1 more

The growing application of 3D concrete printing (3DCP) in construction has raised important questions regarding its long-term durability under freeze–thaw (F–T) exposure, particularly in cold climates. This review paper presents a comprehensive examination of recent research focused on the F–T performance of 3D-printed concrete (3DPC). Key material and process parameters influencing durability, such as print orientation, admixtures, and layer bonding, are critically evaluated. Experimental findings from mechanical, microstructural, and imaging studies are discussed, highlighting anisotropic vulnerabilities and the potential of advanced additives like nanofillers and air-entraining agents. Notably, air-entraining agents (AEA) reduced the compressive strength loss by 1.4–5.3% after exposure to F–T cycles compared to control samples. Additionally, horizontally cored specimens with AEA incorporated into their mixture design showed a 15% higher dynamic modulus after up to 300 F–T cycles. Furthermore, optimized printing parameters, such as reduced nozzle standoff distance and minimized printing time gap, reduced surface scaling by over 50%. The addition of a nanofiller such as nano zinc oxide in 3DPC can result in compressive strength retention rates exceeding 95% even after aggressive F–T cycling. The lack of standard testing protocols and the geometry dependence of degradation are emphasized as key research gaps. This review provides insights into optimizing mix designs and printing strategies to improve the F–T resistance of 3DPC, aiming to support its reliable implementation in cold-region infrastructure.

  • Open Access Icon
  • Research Article
  • 10.3390/civileng6030041
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
  • Aug 5, 2025
  • CivilEng
  • Zahraa Ahmed Al-Mammori + 10 more

With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements.

  • Open Access Icon
  • Research Article
  • 10.3390/civileng6030040
Study on Stabilization Mechanism of Silt by Using a Multi-Source Solid Waste Soil Stabilizer
  • Jul 24, 2025
  • CivilEng
  • Xiaohua Wang + 6 more

In this study, to solidify the silt in an expressway, a stabilizing agent composed of industrial wastes, such as ordinary Portland cement (OPC), calcium based alkaline activator (CAA), silicate solid waste material (SISWM) and sulfate solid waste material (SUSWM) was developed. Orthogonal experiments and comparative experiments were carried out to analyze the strength and water stability of the stabilized silt, and get the optimal proportion of each component in the stabilizing agent. A series of laboratory tests, including unconfined compressive strength (UCS), water stability (WS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses, were conducted on solidified silt samples treated with the stabilizing agent at optimal mixing ratios of OPC, CAA, SISWM, and SUSWM to elucidate the evolution of mineral composition and microstructure.

  • Open Access Icon
  • Research Article
  • 10.3390/civileng6030039
Digital-Twin-Based Structural Health Monitoring of Dikes
  • Jul 18, 2025
  • CivilEng
  • Marike Bornholdt + 3 more

Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to structural damage often undetected. Through structural health monitoring (SHM), structural deficits can be detected before visible damage occurs. To improve maintenance workflows and support predictive maintenance of dikes, this paper reports on the integration of digital twin concepts with SHM strategies, referred to as “digital-twin-based SHM”. A digital twin concept, including a standard-compliant building information model, is proposed and implemented in terms of a digital twin environment. For integrating monitoring and sensor data into the digital twin environment, a customized webform is designed. A communication protocol links preprocessed sensor data stored on a server with the digital twin environment, enabling model-based visualization and contextualization of the sensor data. As will be shown in this paper, a digital twin environment is set up and managed in the context of SHM in compliance with technical standards and using well-established software tools. In conclusion, digital-twin-based SHM, as proposed in this paper, has proven to advance predictive maintenance of dikes, contributing to the resilience of critical infrastructure against environmental impacts.