Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Polymer-Dispersed Liquid Crystal Gas Sensor for Acetone Detection Using Correlated Laser Speckles

Acetone is a widely used volatile organic compound in various industries, and several gas sensors have been developed for its detection and real-time monitoring. This study reported a novel method for determining the acetone vapor concentration based on correlated laser speckles using polymer-dispersed liquid crystals (PDLCs). Here, PDLC films comprising a mixture of the thermotropic nematic liquid crystal (LC) and ultraviolet-curable polymers were fabricated using different LC mass ratios and ultraviolet curing conditions. The laser beam was transmitted through the PDLC film to generate scattered light and speckles. When the PDLC film was exposed to the acetone vapor, the acetone molecules diffused into the PDLC film and interacted with the LC molecules, modifying the orientation of the LC molecules and the equivalent refractive index of the LC droplets. This in turn decreased the correlation coefficient of the speckle images. The experimental results indicated that the PDLC gas sensor was selectively sensitive to different concentrations of the acetone vapor, ranging from 1 800 ppm to 3 200 ppm. In comparison with traditional LC gas sensors that use a polarizing microscope to detect the change in brightness of the modulated light field, the proposed method is simpler, less expensive, and more robust under external disturbances such as vibrations.

Read full abstract
Open Access Just Published
Review of Optical Fiber Optofluidic Chemical Sensors and Biosensors

Optical fiber sensors have gained significant attention in recent years owing to their remarkable advantages of remote operation and rapid response. The integration of optical fiber sensing with the microfluidics technology has paved the way for the establishment of optical fiber optofluidic sensing. Optical fiber optofluidic systems possess the advantages of the low invasiveness, compact structure, excellent biocompatibility, and the ability to handle small analyte volumes, rendering them particularly suitable for serving as chemical sensors and biosensors. In this paper, we present an in-depth overview of optical fiber optofluidic chemical sensors and biosensors. Firstly, we provide a comprehensive summary of the types of optical fibers commonly employed in optofluidic chemical and biosensing, elucidating their distinct attributes and performance characteristics. Subsequently, we introduce and thoroughly analyze several representative sensing mechanisms employed in optical fiber optofluidic systems and main performance parameters. Furthermore, this review delves into the modification and functionalization of optical fibers. Additionally, we showcase typical biosensing and chemical sensing applications to demonstrate the practicality and versatility of optical fiber optofluidic sensing. Finally, the conclusion and outlook are given.

Read full abstract
Open Access Just Published
Electropolymerized Dopamine Film-Modified Optical Fiber LMR Biosensor for Immunoassay

In producing high-performance optical biosensors, the selected coupling agent and its fixation mode play an essential role as one of the decisive conditions for antibody incubation. In this work, we designed optical fiber biosensors by electrochemical polymerization to enable low detection limit (LOD) immunoassay. Based on the optical fiber lossy mode resonance (OF-LMR) achieved by In2O3-SnO2-90/10 wt% (ITO), we have simultaneously implemented the electropolymerized dopamine (ePDA) film on the ITO-coated fiber via the electrochemical method, utilizing the excellent electrical conductivity of ITO. After that, the immunoglobulin G (IgG) antibody layer was immobilized on the entire sensing region with the assistance of the ePDA film. The results of immunoassay were analyzed by recording the shift of the LMR resonance wavelength to verify the sensor performance. The LOD was evaluated as the lowest concentration of human IgG detected by the OF-LMR sensor, which was confirmed to be 4.20 ng·mL−1. Furthermore, the sensor achieved selective detection for specific antigens and exhibited a good recovery capability in chicken serum samples. The developed scheme provides a feasible opportunity to enhance the intersection of electrochemistry and optics subjects and also offers a new promising solution to achieve the immunoassay.

Read full abstract
Open Access
Surface Functionalized Plasmonic Sensors for Uric Acid Detection With Gold-Graphene Stacked Nanocomposites

This study presented a surface-functionalized sensor probe using 3-aminopropyltriethoxysilane (APTES) self-assembled monolayers on a Kretschmann-configured plasmonic platform. The probe featured stacked nanocomposites of gold (via sputtering) and graphene quantum dots (GQD, via spin-coating) for highly sensitive and accurate uric acid (UA) detection within the physiological ranges. Characterization encompassed the field emission scanning electron microscopy for detailed imaging, energy-dispersive X-ray spectroscopy for elemental analysis, and Fourier transform infrared spectroscopy for molecular identification. Surface functionalization increased sensor sensitivity by 60.64%, achieving 0.0221 °/(mg/dL) for the gold-GQD probe and 0.035 5 °/(mg/dL) for the gold-APTES-GQD probe, with linear correlation coefficients of 0.8249 and 0.8509, respectively. The highest sensitivity was 0.070 6 °/(mg/dL), with a linear correlation coefficient of 0.993 and a low limit of detection of 0.2 mg/dL. Furthermore, binding affinity increased dramatically, with the Langmuir constants of 14.29 µM−1 for the gold-GQD probe and 0.000 1 µM−1 for the gold-APTES-GQD probe, representing a 142 900-fold increase. The probe demonstrated notable reproducibility and repeatability with relative standard deviations of 0.166% and 0.013%, respectively, and exceptional temporal stability of 99.66%. These findings represented a transformative leap in plasmonic UA sensors, characterized by enhanced precision, reliability, sensitivity, and increased surface binding capacity, synergistically fostering unprecedented practicality.

Read full abstract
Open Access
Femto-Laser Processed Metasurface With Fano Response: Applications to a High Performance Refractometric Sensor

The practical development of compact modern nanophotonic devices relies on the availability of fast and low-cost fabrication techniques applicable to a wide variety of materials and designs. We have engraved a split grating geometry on stainless steel using femtosecond laser processing. This structure serves as a template to fabricate efficient plasmonic sensors, where a thick gold layer is grown conformally on it. The scanning electron microscope (SEM) images confirm the generation of the split laser-induced periodic spatial structures. The optical reflectance of our sensors shows two dips corresponding to the excitation of surface plasmon resonances (SPRs) at two different wavelengths. Furthermore, the asymmetric shape of these spectral responses reveals a strong and narrow Fano resonance. Our computational electromagnetism models accurately reproduce the reflectivity of the fabricated structure. The spectral responses of both the simulated and fabricated structures are fitted to the Fano model that coherently combines the narrow SPRs with the broad continuum background caused by diffraction. The parameters extracted from the fitting, such as the resonance wavelengths and line widths, are used to evaluate the performance of our device as a refractometric sensor for liquids. The maximum sensitivity and figure of merit are 880 nm/RIU and 80 RIU−1, respectively. Besides the compact design of our sensing device, its performance exceeds the theoretical maximum sensitivity of a classical Kretschmann setup.

Read full abstract
Open Access
Experimental Study of Fiber-Optic Temperature Sensor Based on Dual FSIs

To improve the sensitivity measurement of temperature sensors, a fiber optic temperature sensor structure based on the harmonic Vernier effect with two parallel fiber Sagnac interferometers (FSIs) is designed, and theoretical analysis and experimental testing are conducted. The FSI consisting of two polarization maintaining fibers (PMFs) with lengths of 13.62 m and 15.05 m respectively is used to achieve the basic Vernier effect. Then by changing the length of one PMF to approximately i times that of the others, the FSI composed of two PMFs of 7.1 m and 15.05 m is used to achieve the first-order harmonic Vernier effect. Afterward, temperature sensing tests are conducted to observe the wavelength drift during temperature changes and ultimately achieve high sensitivity. The experimental results show that the temperature sensitivity of the sensor based on the first-order harmonic Vernier effect is −28.89 nm/°C, which is 17.09 times that of a single FSI structure (−1.69 nm/°C) and 1.84 times that of the sensitivity generated by the structure based on the basic Vernier effect (−15.69 nm/°C). The experimental results are consistent with the theoretical analysis. The structure proposed in this paper achieves drift measurement of 0.1 °C variation based on 1 °C drift, making the fiber optic temperature sensor applicable to related fields that require high precision temperature. The proposed temperature sensor has the simple structure, low production cost, high sensitivity, and broad application prospects.

Read full abstract
Open Access