Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
  • New
  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040132
Phase Formation Study of Solid-State LLZNO and LLZTO via Structural, Thermal, and Morphological Analyses
  • Oct 28, 2025
  • Ceramics
  • Chengjian Li + 5 more

Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte candidate for ASSLBs, owing to its wide electrochemical window and intrinsic safety. Yet phase-pure LLZO remains difficult because secondary phases form, and the transition towards the tetragonal phase, aliovalent doping, mitigates these issues. Still, the phase formation pathway is not fully understood. Here, we present comparative in situ and ex situ studies of Nb- and Ta-doped LLZO (LLZNO and LLZTO) that were synthesized by a solid-state reaction. In situ/ex situ XRD reveals that the lithium precursor dictates the reaction path: differing decomposition temperatures of the lithium precursor define reaction windows that control cubic-phase purity and particle morphology. In air, limited Li diffusion favors oxycarbonates and pyrochlore, necessitating 950–1050 °C to achieve phase-pure cubic LLZO. Under N2, faster Li availability and diffusion enable uniform nucleation and a route to cubic LLZO without detectable secondary phases. These findings demonstrate the coupled effects of temperature, precursor, dopant, and atmosphere, guiding process optimization and scalable production.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040131
Tapping into the Past: First Approach to a Diachronic Material Characterization of Mayapán Pottery
  • Oct 27, 2025
  • Ceramics
  • Miguel Pérez + 7 more

The great city of Mayapan has experienced a technological change in pottery making, and our results confirm a shift in the raw materials and possibly the potters’ knowledge about them. The dynamics of change during the Postclassic period in the Maya area are reflected in the material changes used to make pottery. A comprehensive analysis was conducted on a collection of 248 pottery items from the archaeological site of Mayapán in Yucatán, Mexico, dating from the Middle Preclassic to Postclassic periods (700 BC–1500 CE). Non-invasive methods were used for the entire pottery set, including X-ray fluorescence (XRF) and fiber-optic reflectance spectroscopy (FORS). Additionally, for a representative subset, minimally invasive techniques such as inductively coupled plasma optical emission spectrometry (ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were employed. The resulting data enabled the identification of materials used in the pottery’s manufacture. The elemental composition of the objects was determined, revealing correlations between elements such as Si with Al that yield a R2 factor of 0.94. The results indicate the presence of smectite clays, carbonates, and iron oxides. The results show that a higher proportion of carbonates was found in the pieces from the Postclassic period compared to those from the Preclassic period, which may be associated with a change in the manufacturing process. Likewise, the Postclassic pieces are distinguished by a greater contribution of the Mg-OH signal, unlike the Preclassic and Classic, which show a greater contribution of the Al-OH group. The implications for the technological knowledge of the potters suggest the use of different technologies across various periods and material changes driven by shifts in political and economic relations in the city and the northern plains.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040129
Clinical Advances in Calcium Phosphate for Maxillomandibular Bone Regeneration: From Bench to Bedside
  • Oct 21, 2025
  • Ceramics
  • Seyed Ali Mostafavi Moghaddam + 4 more

Background: Maxillomandibular bone defects present a complex challenge in regenerative medicine due to anatomical and functional intricacies. Calcium phosphate (CP)-based biomaterials have emerged as promising bone graft substitutes due to their biocompatibility, osteoconductivity, and bioactivity. Aim: This Review highlights recent clinical and experimental advancements in CP-based biomaterials for maxillomandibular bone regeneration, bridging the gap from bench to bedside. Method: An in vitro, in vivo, and clinical literature review was conducted to evaluate the performance of CP ceramics, including hydroxyapatite (HA), tricalcium phosphate (TCP), biphasic ceramics, and novel composites with polymers, growth factors, and nanoparticles. Results: Calcium phosphate-based biomaterials demonstrate excellent bone regeneration potential, with Beta-tricalcium phosphate (β-TCP) and HA being the most widely utilized. Composite scaffolds and 3-dimensional (3D)-printed constructs show enhanced mechanical properties and biological integration. Clinical trials have confirmed the safety and efficacy of CP-based materials, yielding promising outcomes in osteoconduction and defect healing. However, limitations persist regarding mechanical strength and long-term degradation profiles. Conclusions: CP-based biomaterials offer significant clinical promise for maxillomandibular bone regeneration. Continued advancements in scaffold design and biofunctionalization are crucial for overcoming current limitations and fully realizing their therapeutic potential.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040128
Densification and Conductivity of Li-Doped NiO Targets for Hole-Transport Layer of Perovskite Solar Cells
  • Oct 18, 2025
  • Ceramics
  • Juan Li + 5 more

NiO-based hole-transport layers are crucial for high-efficiency perovskite solar cells. An industrial deposition method of NiO films is magnetron sputtering using ceramic targets. NiO targets doped with Li contents at 1%, 3%, and 5% were designed, and the doping contents and sintering temperatures were investigated. All the targets have a face-centered cubic phase, dense microstructure, and an average size of a few microns. The NLO targets sintered at an optimal temperature of 1400 °C exhibited high relative density (>98%) and low resistivity (<6 Ω∙cm). These results pave the way for depositing NiO-based hole-transport layer by magnetron sputtering.

  • New
  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040127
Hydrothermal Synthesis Optimization of High-Aspect Ratio α-Al2O3 Microfibers for Thermally Conductive Soft Composites
  • Oct 9, 2025
  • Ceramics
  • Omar Zahhaf + 6 more

This work presents a comprehensive study on the synthesis and application of Al2O3 fibers derived from an ammonium aluminum carbonate hydroxide (AACH) precursor. Through a hydrothermal route, the influence of critical synthesis parameters, including aluminum nitrate and urea concentrations, reaction temperature and time, and stirring conditions, on fiber morphology and aspect ratio was systematically investigated. The as-synthesized AACH fibers were subsequently converted into thermodynamically stable α-alumina fibers via controlled annealing. These high-aspect ratio alumina fibers were incorporated into polydimethylsiloxane (PDMS) to produce electrically insulating, thermally conductive composites. The thermal performance of fiber-filled composites was benchmarked against that of particle-filled counterparts, with the former exhibiting significantly enhanced thermal conductivity. Furthermore, the dielectrophoretic alignment of alumina fibers led to an additional increase in thermal conductivity, underlining the importance of high-aspect ratio fillers. This study uniquely combines the controlled synthesis of alumina fibers with their incorporation and alignment in a polymer matrix, presenting a novel and effective approach for engineering anisotropic, thermally conductive, and electrically insulating composite materials. Dielectrophoretic alignment of α-Al2O3 fibers synthesized through optimized hydrothermal conditions and incorporated into PDMS composites deliver over 95 % higher thermal conductivity than spherical fillers.

  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040126
Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis
  • Oct 4, 2025
  • Ceramics
  • Thomas Hanemann + 6 more

Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from 0.0 to 0.25 in 0.05 steps, due to the enhanced synthetic effort, and in the case of the SGP, x was set only to 0.05, 0.15, and 0.25. The resulting properties after synthesis, calcination, and sintering, like particle size distribution, specific surface area, particle morphology, and crystalline phase were characterized. The expected tetragonal phase, free from any remarkable impurity, was found in all cases, and irrespective of the selected synthesis method. Pressed pellets were used for the measurement of the temperature and frequency-dependent relative permittivity enabling the estimation of the Curie temperatures of all synthesized BSTs. Irrespective of the selected synthesis method, the obtained Curie temperature drops with increasing strontium content to almost identical values, e.g., in the case of x = 0.15, a Curie temperature range 95–105 °C was measured. Thin BST films could be deposited on different substrate materials applying electrophoretic deposition in a good and reliable quality according to the Hamaker equation. The properties of the BSTs obtained by the simpler solid-state route are almost identical to the ones yielded by the more complex sol–gel process. In future, this result allows for a possible wider usage of BST perovskites for ferroelectric and piezoelectric devices due to the easy synthetic access by the solid-state route.

  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040125
Impact of Thermal Cycling on the Vickers Microhardness of Dental CAD/CAM Materials: Greater Retention in Polymer-Infiltrated Ceramic Networks (PICNs) Compared to Nano-Filled Resin Composites
  • Oct 4, 2025
  • Ceramics
  • Jorge I Fajardo + 8 more

We synthesized the current evidence from the literature and conducted a 2 × 3 factorial experiment to quantify the impact of thermocycling on the Vickers microhardness (HV) of dental CAD/CAM materials: VITA ENAMIC (VE, polymer-infiltrated ceramic network) and CERASMART (CS, nanofilled resin-matrix). Sixty polished specimens (n = 10 per Material × Cycles cell; 12 × 2 × 2 mm) were thermocycled at 5–55 °C (0, 10,000, 20,000 cycles; 30 s dwell, ≈10 s transfer) and tested as HV0.3/10 (300 gf, 10 s; five indentations/specimen with standard spacing). Assumptions regarding the model residuals were met (Shapiro–Wilk W ≈ 0.98, p ≈ 0.36; Levene F(5,54) ≈ 1.12, p ≈ 0.36), so a two-way ANOVA (Type II) with Tukey’s HSD post hoc (α = 0.05) was applied. VE maintained consistently higher HV than CS at all cycle levels and showed a smaller drop from baseline: VE (mean ± SD): 200.2 ± 10.8 (0), 192.4 ± 13.9 (10,000), and 196.7 ± 9.3 (20,000); CS: 60.8 ± 6.1 (0), 53.4 ± 4.7 (10,000), and 62.1 ± 3.8 (20,000). ANOVA revealed significant main effects from the material (η2p = 0.972) and cycles (η2p = 0.316), plus a Material × Cycles interaction (η2p = 0.201). Results: Thermocycling produced material-dependent changes in microhardness. Relative to baseline, VE varied by −3.9% (10,000) and −1.7% (20,000), while CS varied by −12.2% (10,000) and +2.1% (20,000); from 10,000→20,000 cycles, microhardness recovered by +2.2% (VE) and +16.3% (CS). Pairwise comparisons were consistent with these trends (CS decreased at 10,000 vs. 0 and recovered at 20,000; VE only showed a modest change). Conclusions: Thermocycling effects were material-dependent, with smaller losses and better retention in VE (PICN) than in CS. These results align with the literature (resin-matrix/hybrids are more sensitive to thermal aging; polished finishes mitigate losses). While HV is only one facet of performance, the superior retention observed in PICN under thermal challenge suggests the improved preservation of superficial integrity; standardized reporting of aging parameters and integration with wear, fatigue, and adhesion outcomes are recommended to inform indications and longevity.

  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040124
Enhanced Transdermal Delivery via Electrospun PMMA Fiber Mats Incorporating Ibuprofen-Intercalated Layered Double Hydroxides
  • Oct 4, 2025
  • Ceramics
  • Van Thi Thanh Tran + 5 more

This study reports the development of electrospun poly(methyl methacrylate) (PMMA) fiber mats incorporating ibuprofen (IBU)-intercalated layered double hydroxides (LDH) for enhanced transdermal drug delivery systems (TDDS). IBU, in its anionic form, was successfully intercalated into LDH, which possesses anion exchange capabilities, and subsequently embedded into PMMA fibers via electrospinning. In vitro drug release experiments demonstrated that UPMMA–LDH–IBU fibers exhibited significantly higher IBU release than PMMA–IBU controls. This enhancement was attributed to the improved hydrophilicity and water absorption imparted by the LDH, as confirmed by contact angle and water uptake measurements. Furthermore, artificial skin permeation tests revealed that the UPMMA–LDH–IBU fibers maintained comparable release rates to those observed during buffer immersion, indicating that the rate-limiting step was the diffusion of IBU within the fiber matrix rather than the interface with the skin or buffer. These findings highlight the critical role of LDH in modulating drug release behavior and suggest that UPMMA–LDH–IBU electrospun fiber mats offer a promising and efficient platform for advanced TDDS applications.

  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040122
The Effect of Low-Grade Hydrothermal Aging on the Shade Stability of Monolithic CAD/CAM Dental Ceramic Restorations
  • Sep 28, 2025
  • Ceramics
  • Mohammad Zaki Daoud + 2 more

Translucency and color stability are key factors for the long-term success of dental ceramics. The aim was to compare the translucency parameter (TP) and color stability (ΔE) of CAD/CAM ceramics, including a lithium disilicate (E; IPS e.max CAD), a zirconia-reinforced lithium-silicate (S; VitaSuprinity), and a zirconia-based ceramic (Z; Ceramill Zolid HT+), before and after low-grade hydrothermal aging (134 °C and 2 bars for 20 h). Ninety disks (n = 30/group, A2, 1.2 ± 0.02 mm) were fabricated and their L*, a*, and b* values were recorded against black and white backgrounds to calculate TP, contrast ratio (CR), and opacity (OP). ANOVA, Bonferroni post hoc, and paired t-tests (α = 0.05) showed that after aging, the Z group showed ↓L and ↑a values; the E group showed ↓L with ↑ a and b; and the S group showed only ↑a. All ceramics exhibited ΔE values below the clinical acceptability threshold of 3.7. E presented the highest TP, whereas Z demonstrated the highest CR and masking ability. Aging significantly increased CR and OP but did not alter TP. Within the limitations of this study, all tested ceramics maintained clinically acceptable shade stability and translucency, with E showing superior initial translucency and Z offering improved masking potential.

  • Open Access Icon
  • Research Article
  • 10.3390/ceramics8040119
Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis
  • Sep 23, 2025
  • Ceramics
  • Yana Suchikova + 3 more

Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3), focusing on their functional roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as electron transport layers, antireflective coatings, and buffer layers. Al2O3 and SiO2 demonstrate highly specialized applications in surface passivation and interface engineering, while CeO2 offers UV-blocking capability and Fe2O3 shows potential as an absorber material in photoelectrochemical systems. WO3 is noted for its multifunctionality and suitability for scalable, high-rate processing. Together, these findings suggest that binary oxide ceramics are poised to transition from supporting roles to essential components of stable, efficient, and environmentally safer next-generation solar cells.